Library BioFLL.ReachabilityProperties


Require Import LL.SequentCalculiBasicTheory.
Require Import Definitions.
Require Import Utils.

Reachability Properties of the system

Property 1

Is it possible for a CTC, with mutations EPCAM,CD47 and fitness 3 , to become an extravasating CTC with fitness 8 ? What is the time delay for such transition ?

Lemma Property1: n t,
 |-F- Theory ; [ E{ fun _ xperp (TX{ var x} )} ** (C{ n; bone; 8; EPCDCDME} ) ;
 Atom T{ Cte t} ; Atom C{ n ; blood ; 3 ; EPCD}] ; UP [] .
Proof with solveF .
  idtac "Proving Property 1" .
  intros.
  applyRule (blec2 3).
  applyRule (blecc2 5).
  applyRule (bleccm2 7).
  eapply tri_dec1 with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ var x}} ** C{ n; bone; 8; EPCDCDME} ) ...
  eapply tri_tensor ...
  eapply tri_ex with (t:= (d72 7) s+ (d52 5) s+ (d42 3) s+ (Cte t)) ...
  eapply Init1...
  eapply Init1...
Qed.

Property 2

What is the time delay for a CTC with mutations EPCAM, CD47 and fitness 3 or 4 to become an extravasating CTC with fitness between 6 and 9 ?

Lemma Property2: n t,
 |-F- Theory ; [E{ fun _ xperp (TX{ var x} )} ** ( (C{ n ; bone ; 6 ; EPCDCDME} )
   (C{n ; bone ; 7 ; EPCDCDME}) (C{n ; bone ; 8 ; EPCDCDME} )
   (C{n ; bone ; 9 ; EPCDCDME}) )] ;
    UP [T{ Cte t} ; C{ n ; blood ; 3 ; EPCD} & C{ n ; blood ; 4 ; EPCD} ] .
Proof with solveF.
  idtac "Proving Property 2" .
  intros.
  tri_negP.
  +
    applyRule (blec0 3).
    applyRule (blec2 2).
    applyRule (blecc0 4).
    applyRule (blecc2 3).
    applyRule (bleccm2 5).
    eapply tri_dec1 with (F:= E{ fun _ xperp (TX{ var x} )} ** ( (Perp C{ n ; bone ; 6 ; EPCDCDME}) (Perp C{n ; bone ; 7 ; EPCDCDME}) (Perp C{n ; bone ; 8 ; EPCDCDME}) (Perp C{n ; bone ; 9 ; EPCDCDME}) )) ...
    eapply tri_tensor ...
    eapply tri_ex with (t:= d72 5 s+ d52 3 s+ d50 4 s+ d42 2 s+ d40 3 s+ Cte t) ...
    eapply Init1...
    eapply tri_plus1 ...
    eapply tri_plus1 ...
    eapply tri_plus1 ...
    eapply Init1...
  +
    applyRule (blec0 4) .
    applyRule (blec2 3) .
    applyRule (blecc0 5) .
    applyRule (blecc2 4) .
    applyRule (bleccm2 6) .
    eapply tri_dec1 with (F:= E{ fun _ xperp (TX{ var x} )} ** ( (Perp C{ n ; bone ; 6 ; EPCDCDME}) (Perp C{n ; bone ; 7 ; EPCDCDME}) (Perp C{n ; bone ; 8 ; EPCDCDME}) (Perp C{n ; bone ; 9 ; EPCDCDME}) )) ...
    eapply tri_tensor ...
    eapply tri_ex with (t:= d72 6 s+ d52 4 s+ d50 5 s+ d42 3 s+ d40 4 s+ Cte t) ...
    eapply Init1 ...
    eapply tri_plus1 ...
    eapply tri_plus1 ...
    eapply tri_plus2 ...
    eapply Init1 ...
Qed.

Property 3

A cell in the breast, with mutation EP , might have his fitness oscillating from 1 to 2 and back ?
Lemma Property3_Seq1: n t,
     d,
 |-F- Theory ; [ E{ fun _ xperp TX{ fc1 d (var x)}} ** (C{ n; breast; 2; EP} ) ;
 Atom T{ Cte t} ; Atom C{ n ; breast ; 1 ; EP}] ; UP [] .
Proof with solveF .
  idtac "Property3: Proving Cycle 1" .
  intros.
  eexists.
  applyRule (bre0r 1).
  eapply tri_dec1 with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ** C{ n; breast; 2; EP} ) ...
  eapply tri_tensor ...
  eapply tri_ex with (t:= (Cte t)) ...
  eapply Init1...
  eapply Init1...
Qed.

Lemma Property3_Seq2: n t,
     d,
 |-F- Theory ; [ E{ fun _ xperp TX{ fc1 d (var x)}} ** (C{ n; breast; 1; EP} ) ;
 Atom T{ Cte t} ; Atom C{ n ; breast ; 2 ; EP}] ; UP [] .
Proof with solveF .
  idtac "Property3: Proving Cycle 2" .
  intros.
  eexists.
  applyRule (bre0 2).
  eapply tri_dec1 with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ** C{ n; breast; 1; EP} ) ...
  eapply tri_tensor ...
  eapply tri_ex with (t:= (Cte t)) ...
  eapply Init1...
  eapply Init1...
Qed.