Library BioFLL.ReachabilityProperties
Reachability Properties of the system
Property 1
Lemma Property1: ∀ n t,
|-F- Theory ; [ E{ fun _ x ⇒ perp (TX{ var x} )} ** (C{ n; bone; 8; EPCDCDME} ⁻) ;
Atom T{ Cte t} ; Atom C{ n ; blood ; 3 ; EPCD}] ; UP [] .
Proof with solveF .
idtac "Proving Property 1" .
intros.
applyRule (blec2 3).
applyRule (blecc2 5).
applyRule (bleccm2 7).
eapply tri_dec1 with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ var x}} ** C{ n; bone; 8; EPCDCDME} ⁻) ...
eapply tri_tensor ...
eapply tri_ex with (t:= (d72 7) s+ (d52 5) s+ (d42 3) s+ (Cte t)) ...
eapply Init1...
eapply Init1...
Qed.
Property 2
What is the time delay for a CTC with mutations EPCAM, CD47 and fitness 3 or 4 to become an extravasating CTC with fitness between 6 and 9 ?Lemma Property2: ∀ n t,
|-F- Theory ; [E{ fun _ x ⇒ perp (TX{ var x} )} ** ( (C{ n ; bone ; 6 ; EPCDCDME} ⁻)
⊕ (C{n ; bone ; 7 ; EPCDCDME}⁻) ⊕ (C{n ; bone ; 8 ; EPCDCDME}⁻ )
⊕ (C{n ; bone ; 9 ; EPCDCDME}⁻) )] ;
UP [T{ Cte t} ⁺ ; C{ n ; blood ; 3 ; EPCD}⁺ & C{ n ; blood ; 4 ; EPCD}⁺ ] .
Proof with solveF.
idtac "Proving Property 2" .
intros.
tri_negP.
+
applyRule (blec0 3).
applyRule (blec2 2).
applyRule (blecc0 4).
applyRule (blecc2 3).
applyRule (bleccm2 5).
eapply tri_dec1 with (F:= E{ fun _ x ⇒ perp (TX{ var x} )} ** ( (Perp C{ n ; bone ; 6 ; EPCDCDME}) ⊕ (Perp C{n ; bone ; 7 ; EPCDCDME}) ⊕ (Perp C{n ; bone ; 8 ; EPCDCDME}) ⊕ (Perp C{n ; bone ; 9 ; EPCDCDME}) )) ...
eapply tri_tensor ...
eapply tri_ex with (t:= d72 5 s+ d52 3 s+ d50 4 s+ d42 2 s+ d40 3 s+ Cte t) ...
eapply Init1...
eapply tri_plus1 ...
eapply tri_plus1 ...
eapply tri_plus1 ...
eapply Init1...
+
applyRule (blec0 4) .
applyRule (blec2 3) .
applyRule (blecc0 5) .
applyRule (blecc2 4) .
applyRule (bleccm2 6) .
eapply tri_dec1 with (F:= E{ fun _ x ⇒ perp (TX{ var x} )} ** ( (Perp C{ n ; bone ; 6 ; EPCDCDME}) ⊕ (Perp C{n ; bone ; 7 ; EPCDCDME}) ⊕ (Perp C{n ; bone ; 8 ; EPCDCDME}) ⊕ (Perp C{n ; bone ; 9 ; EPCDCDME}) )) ...
eapply tri_tensor ...
eapply tri_ex with (t:= d72 6 s+ d52 4 s+ d50 5 s+ d42 3 s+ d40 4 s+ Cte t) ...
eapply Init1 ...
eapply tri_plus1 ...
eapply tri_plus1 ...
eapply tri_plus2 ...
eapply Init1 ...
Qed.
Property 3
A cell in the breast, with mutation EP , might have his fitness oscillating from 1 to 2 and back ?
Lemma Property3_Seq1: ∀ n t,
∃ d,
|-F- Theory ; [ E{ fun _ x ⇒ perp TX{ fc1 d (var x)}} ** (C{ n; breast; 2; EP} ⁻) ;
Atom T{ Cte t} ; Atom C{ n ; breast ; 1 ; EP}] ; UP [] .
Proof with solveF .
idtac "Property3: Proving Cycle 1" .
intros.
eexists.
applyRule (bre0r 1).
eapply tri_dec1 with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ** C{ n; breast; 2; EP} ⁻ ) ...
eapply tri_tensor ...
eapply tri_ex with (t:= (Cte t)) ...
eapply Init1...
eapply Init1...
Qed.
Lemma Property3_Seq2: ∀ n t,
∃ d,
|-F- Theory ; [ E{ fun _ x ⇒ perp TX{ fc1 d (var x)}} ** (C{ n; breast; 1; EP} ⁻) ;
Atom T{ Cte t} ; Atom C{ n ; breast ; 2 ; EP}] ; UP [] .
Proof with solveF .
idtac "Property3: Proving Cycle 2" .
intros.
eexists.
applyRule (bre0 2).
eapply tri_dec1 with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ** C{ n; breast; 1; EP} ⁻ ) ...
eapply tri_tensor ...
eapply tri_ex with (t:= (Cte t)) ...
eapply Init1...
eapply Init1...
Qed.
∃ d,
|-F- Theory ; [ E{ fun _ x ⇒ perp TX{ fc1 d (var x)}} ** (C{ n; breast; 2; EP} ⁻) ;
Atom T{ Cte t} ; Atom C{ n ; breast ; 1 ; EP}] ; UP [] .
Proof with solveF .
idtac "Property3: Proving Cycle 1" .
intros.
eexists.
applyRule (bre0r 1).
eapply tri_dec1 with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ** C{ n; breast; 2; EP} ⁻ ) ...
eapply tri_tensor ...
eapply tri_ex with (t:= (Cte t)) ...
eapply Init1...
eapply Init1...
Qed.
Lemma Property3_Seq2: ∀ n t,
∃ d,
|-F- Theory ; [ E{ fun _ x ⇒ perp TX{ fc1 d (var x)}} ** (C{ n; breast; 1; EP} ⁻) ;
Atom T{ Cte t} ; Atom C{ n ; breast ; 2 ; EP}] ; UP [] .
Proof with solveF .
idtac "Property3: Proving Cycle 2" .
intros.
eexists.
applyRule (bre0 2).
eapply tri_dec1 with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ** C{ n; breast; 1; EP} ⁻ ) ...
eapply tri_tensor ...
eapply tri_ex with (t:= (Cte t)) ...
eapply Init1...
eapply Init1...
Qed.