Library BioFLL.LL.StrongInduction
Strong Induction
Section StrongIndPrinciple.
Variable P: nat → Prop.
Hypothesis P0: P O.
Hypothesis Pn: ∀ n, (∀ m, m≤n → P m) → P (S n).
Lemma strind_hyp : ∀ n, (∀ m, ((m ≤ n) → P m)).
Proof.
induction n; intros m H;inversion H;auto.
Qed.
Strong induction principle
Theorem strongind: ∀ n, P n.
Proof.
induction n; auto.
apply Pn.
apply strind_hyp.
Qed.
End StrongIndPrinciple.
Proof.
induction n; auto.
apply Pn.
apply strind_hyp.
Qed.
End StrongIndPrinciple.