
Proving Structural Properties of Sequent Systems in
Rewriting Logic

Carlos Olarte1, Elaine Pimentel1, and Camilo Rocha2

1 Universidade Federal do Rio Grande do Norte, Natal, Brazil
2 Pontificia Universidad Javeriana, Cali, Colombia

Abstract. General and effective methods are required for providing good au-
tomation strategies to prove properties of sequent systems. Structural properties
such as admissibility, invertibility, and permutability of rules are crucial in proof
theory, and they can be used for proving other properties such as cut-elimination.
However, finding proofs for these properties require inductive reasoning over the
provability relation, which is often quite elaborated, exponentially exhaustive,
and error prone. This paper aims at developing automatic techniques for proving
structural properties of sequent systems. The proposed techniques are presented
in the rewriting logic metalogical framework, and use rewrite- and narrowing-
based reasoning. They have been fully mechanized in Maude and have achieved
a great degree of automation when used on several sequent systems including
intuitionistic and classical logics, linear logic, and normal modal logics.

1 Introduction

Contemporary proof theory started with Gentzen’s natural deduction and sequent cal-
culus in the 1930’s [8], and it has had a continuous development with the proposal of
several proof systems for many logics. Proof systems are important tools for formal-
izing, reasoning, and analyzing structural properties of proofs, as well as determining
computational and metalogical consequences of logical systems. Consequently, propos-
ing good calculi is one of the main research topics in proof theory.

It is more or less consensus that a good proof system should support the notion of
analytic proof [6], where every formula that appears in a proof must be a sub-formula of
the formulas to be proved. This restriction can be exploited to prove important metalog-
ical properties of sequent systems such as consistency. In sequent systems, analyticity
is often guaranteed by the cut-elimination property: if B follows from A and C follows
from B, then C follows from A. That is, intermediate lemmas (e.g., B) can be “cut”
from the proof system. It turns out that the proof of cut-elimination for a given system
is often quite elaborated, exponentially exhaustive, and error prone. Hence the need for
general and effective methods for providing good automation strategies. In the case of
cut-elimination, such methods strongly depend on the ability of showing permutability
of rules which may depend on additional properties such as admissibility and invertibil-
ity of rules, which, in its turn, require involved induction-based reasoning.

Rewriting logic [7] is a metalogical framework that can be used to represent other
logics and to reason about their metalogical properties [2]. When compared to a logical

framework, a metalogical framework is more powerful because it includes the ability
to reason about a logic’s entailment relation as opposed to just being sound to simulate
it. Moreover, important computational aspects of the theory under study need to be
encoded in flexible ways, so that such a theory can become data, which can be modified
and executed efficiently by a computational engine. Thanks to its reflective capabilities
and initial reachability semantics, important inductive aspects of rewriting logic theories
can be encoded in its own metalanguage so that theories, proofs, and provability can be
mechanically analyzed with the help of rewriting logic systems such as Maude [7].

This paper develops new techniques, using rewriting logic as a metalogical frame-
work, for reasoning about properties of sequent systems. Relying on rewrite- and nar-
rowing-based reasoning, these techniques are presented as procedures for proving ad-
missibility, invertibility, and permutability of inference rules. Such procedures have
been fully implemented in Maude. The case study analyses include the following se-
quent systems: propositional intuitionistic logic (G3ip), multi-conclusion propositional
intuitionistic logic (mLJ), propositional classical logic (G3cp), propositional linear logic
(LL), and normal modal logics (K and S4). Beyond advocating for the use of rewriting
logic as a metalogical framework, the novel algorithms presented here are able to auto-
matically discharge many proof obligations and ultimately obtain the expected results.

The approach can be summarized as follows. The inference rules of a sequent sys-
tem S are specified as (backward) rewrite rules modulo structural axioms (e.g., associa-
tivity, commutativity, and identity) in RS , inducing a rewrite relation→S on multisets
of sequents. From the rewriting logic viewpoint, the main results presented here are
metatheorems about inductive reachability properties of→S . These metatheorems pro-
pose sufficient conditions for proving inductive properties that can be generated and
checked with the help of rewriting and narrowing. More precisely, given an inductive
property φ about S, several subgoals φi are generated by unification modulo axioms.
The system S is extended to S ′ by adding inductive lemmas and, if each φi can be
→S ′ -rewritten to the empty multiset, then φ holds in the initial reachability model of
S. In such a process, the original rewrite theory RS is extended and modified in sev-
eral ways, which is painlessly implemented with the off-the-shelf reflective capabilities
of rewriting logic available in Maude. In general, the resulting metatheorems can be
seen as tactics for automating reasoning of sequent systems in rewriting logic. This ap-
proach is generic in the sense that only mild restrictions are imposed on the formulas
of the sequent system S and modular since properties can be proved incrementally.
Outline. Sec. 2 introduces the structural properties that will be considered; Sec. 3 presents
order-sorted rewriting logic and its main features as a logical framework; Sec. 4 estab-
lishes how to prove the structural properties based on a rewriting approach; Sec. 5 shows
how to automatize the process of proving the structural properties; Sec. 6 presents dif-
ferent sequent calculi and properties that can be proved with the approach. Finally,
Sec. 7 concludes the paper and presents some future research directions.

2 Three Structural Properties of Sequent-based Logics

This section presents and illustrates three structural properties of sequent systems, namely,
permutability, admissibility, and invertibility of rules. First, some notation and standard
definitions are presented.

Γ, p ⊢ p
I

Γ, F ⊢ C Γ,G ⊢ C

Γ,F ∨G ⊢ C
∨L

Γ ⊢ Fi
Γ ⊢ F1 ∨ F2

∨Ri

Γ, F,G ⊢ C

Γ,F ∧G ⊢ C
∧L

Γ ⊢ F Γ ⊢ G
Γ ⊢ F ∧G

∧R

Γ ⊢ ⊤
⊤R

Γ ⊢ C
Γ,⊤ ⊢ C

⊤L Γ,⊥ ⊢ C
⊥L

Γ, F ⊃ G ⊢ F Γ,G ⊢ C

Γ,F ⊃ G ⊢ C
⊃L

Γ, F ⊢ G

Γ ⊢ F ⊃ G
⊃R

Fig. 1: System G3ip for propositional intuitionistic logic. In the I rule, p is atomic.

Definition 1 (Sequents). A sequent is an expression of the form Γ ⊢ ∆ where Γ (the
antecedent) and ∆ (the succedent) are finite multisets of formulas. Systems with the
restriction of having at most one formula at the succedent are called single-conclusion;
systems with no such a restriction are called multiple-conclusion. Systems where Γ
must be empty are called one-sided; otherwise they are called two-sided. A sequent
calculus consists of a set of rules of the form

S1 ⋯ Sn
S

r

where the sequent S is the conclusion inferred from the premise sequents S1, . . . , Sn in
the rule r. If the set of premises is empty, then r is an axiom. In a rule introducing a
connective, the formula with that connective in the conclusion sequent is the principal
formula, and its sub-formulas in the premises are the auxiliary formulas.

As an example, Fig. 1 presents the two-sided single-conclusion propositional intu-
itionistic sequent system G3ip [21]. In that system, for instance, the conclusion F ∨G
of ∨L is the principal formula, while the formulas F and G are auxiliary formulas.

A derivation in a sequent calculus is a finite labelled tree with nodes labelled by
sequents and a single root, axioms at the top nodes, and where each node is connected
with the (immediate) successor nodes (if any) according to the inference rules.

Definition 2 (Height of derivation). The height of a derivation is the greatest number
of successive applications of rules in it, where an axiom has height 0.

The structural property of rule permutability [17, 19] is stated next.

Definition 3 (Permutability). Let r1 and r2 be inference rules in a sequent calculus
system S. The rule r2 permutes down r1, notation r2 ↓ r1, if for every S derivation of
a sequent S in which r1 operates on S and r2 operates on one or more of r1’s premises
(but not on auxiliary formulas of r1), there exists another S derivation of S in which r2
operates on S and r1 operates on zero or more of r2’s premises (but not on auxiliary
formulas of r2).

For instance, consider the left ∨L and right ∨Ri
rules for disjunction in G3ip. First,

it can be observed that ∨L ↓ ∨Ri
:

Γ,F ⊢ Ci Γ,G ⊢ Ci

Γ,F ∨G ⊢ Ci

∨L

Γ,F ∨G ⊢ C1 ∨C2

∨Ri ↝

Γ,F ⊢ Ci

Γ,F ⊢ C1 ∨C2

∨Ri

Γ,G ⊢ Ci

Γ,G ⊢ C1 ∨C2

∨Ri

Γ,F ∨G ⊢ C1 ∨C2

∨L

The inverse permutation, however, does not hold, i.e., ∨Ri
/↓ ∨L. In fact, in

Γ,F ⊢ Ci

Γ,F ⊢ C1 ∨C2

∨Ri
Γ,G ⊢ C1 ∨C2

Γ,F ∨G ⊢ C1 ∨C2

∨L the provability of Γ,G ⊢ C1 ∨ C2 does not
imply the provability of Γ,G ⊢ Ci; hence, such a derivation cannot start by applying
the rule ∨Ri

.
Other two important structural properties are admissibility and invertibility.

Definition 4 (Admissibility and Invertibility). Let S be a sequent system. An infer-
ence rule S1⋯Sn

S
is called:

i. admissible in S if S is derivable in S whenever S1, . . . , Sn are derivable in S.
ii. invertible in S if the rules S

S1
, . . . , S

Sn
are admissible in S.

Proving invertibility often requires induction on the height of derivations, where all
the possible rule applications have to be considered. For example, for proving that ∨L
is invertible in G3ip, the goal is to show that both Γ, F ⊢ C and Γ,G ⊢ C are provable
whenever Γ, F ∨G ⊢ C is provable. The result follows by a case analysis on the shape
of the proof of Γ, F ∨ G ⊢ C. Consider, e.g, the case when C = A ⊃ B and the last

rule applied is
Γ,F ∨G,A ⊢ B

Γ,F ∨G ⊢ A ⊃ B
⊃R. Then, by the inductive hypothesis, Γ, F,A ⊢ B and

Γ,G,A ⊢ B are provable and, by using ⊃R, the following hold:

Γ,F,A ⊢ B

Γ,F ⊢ A ⊃ B
⊃R

and

Γ,G,A ⊢ B

Γ,G ⊢ A ⊃ B
⊃R

as needed. On the other hand, ∨Ri
is not invertible: if p1, p2 are different atomic for-

mulas, then pi ⊢ p1 ∨ p2 is provable for i = 1, 2, but pi /⊢ pj for i /= j.
In general, proving invertibility may involve some subtle details, as it will be seen in

Sec. 6. A common one is the need for admissibility of the weakening structural rule. A
structural rule does not introduce logical connectives, but instead changes the structure
of the sequent. Since sequents are built from multisets, such changes are related to the
cardinality of a formula or its presence/absence in a context. For example, the structural
rules for weakening and contraction in the intuitionistic setting are:

Γ ⊢ C

Γ,∆ ⊢ C
W

Γ,∆,∆ ⊢ C

Γ,∆ ⊢ C
C

These rules are admissible in G3ip. The proof of admissibility of weakening is inde-
pendent of any other results and it is also by induction on the height of derivations
(and considering all possible rule applications). Admissibility of contraction is more
involved, often depending on invertibility results. As an example, suppose that

Γ,F ∨G,F ⊢ C Γ,F ∨G,G ⊢ C

Γ,F ∨G,F ∨G ⊢ C
∨L

Observe that the inductive hypothesis cannot be applied since the premises do not have
duplicated copies of auxiliary formulas. In order to obtain a proof, invertibility of ∨L is
needed: provability of Γ, F ∨G,F ⊢ C and Γ, F ∨G,G ⊢ C implies the provability
of Γ, F, F ⊢ C and Γ,G,G ⊢ C; moreover, by the inductive hypothesis, Γ, F ⊢ C
and Γ,G ⊢ C are provable, and the result follows.

3 Rewriting Logic Preliminaries

This section briefly explains order-sorted rewriting logic [15] and its main features as a
logical framework. Maude [7] is a language and tool supporting the formal specification
and analysis of rewrite theories.

An order-sorted signature Σ is a tuple Σ=(S,≤, F) with a finite poset of sorts
(S,≤) and a set of function symbols F typed with sorts in S, which can be subsort-
overloaded. For X = {Xs}s∈S an S-indexed family of disjoint variable sets with each
Xs countably infinite, the set of terms of sort s and the set of ground terms of sort
s are denoted, respectively, by TΣ(X)s and TΣ,s; similarly, TΣ(X) and TΣ denote
the set of terms and the set of ground terms. A substitution is an S-indexed mapping
θ ∶ X ⟶ TΣ(X) that is different from the identity only for a finite subset of X
and such that θ(x) ∈ TΣ(X)s if x ∈ Xs, for any x ∈ X and s ∈ S. A substitution
θ is called ground iff θ(x) ∈ TΣ or θ(x) = x for any x ∈ X . The application of a
substitution θ to a term t is denoted by tθ.

A rewrite theory is a tuple R = (Σ,E⊎B,R) with: (i) (Σ,E⊎B) an order-sorted
equational theory with signature Σ, E a set of (possibly conditional) equations over
TΣ , and B a set of structural axioms – disjoint from the set of equations E – over TΣ
for which there is a finitary matching algorithm (e.g., associativity, commutativity, and
identity, or combinations of them); and (ii) R a finite set of (possibly with equational
conditions) rewrite rules over TΣ . A rewrite theory R induces a rewrite relation →R
on TΣ(X) defined for every t, u ∈ TΣ(X) by t →R u if and only if there is a rule
(l → r if φ) ∈ R and a substitution θ ∶ X ⟶ TΣ(X) satisfying t =E⊎B lθ,
u =E⊎B rθ, and E ⊎B ¬ φθ [3].

Appropriate requirements are needed to make an equational theory R executable
in Maude. It is assumed that the equations E can be oriented into a set of (possibly
conditional) sort-decreasing, operationally terminating, and confluent rewrite rules

−→
E

moduloB [7]. For a rewrite theory R, the rewrite relation→R is undecidable in general,
even if its underlying equational theory is executable, unless conditions such as coher-
ence [22] are given (i.e, whenever rewriting with →R/E⊎B can be decomposed into
rewriting with →E/B and →R/B). The executability of a rewrite theory R ultimately
means that its mathematical and execution semantics coincide.

The rewriting logic specification of a sequent system S is a rewrite theory RS =

(ΣS , ES ⊎ BS , RS) where: ΣS is an order-sorted signature describing the syntax of
the logic S; ES is a set of executable equations modulo BS corresponding to those
parts of the deduction process that, being deterministic, can be safely automated as
computation rules without any proof search; and RS is a set of executable rewrite rules
modulo BS capturing those non-deterministic aspects of logical inference in S that
require proof search. The point is that although both the computation rules ES and
the deduction rules RS are executed by rewriting modulo the set of structural axioms
BS , by the executable assumptions on RS , the rewrite relation →ES/BS has a single
outcome in the form of a canonical form and thus can be executed blindly with “don’t
care” non-determinism and without any proof search. Furthermore,BS provides yet one
more level of computational automation in the form ofBS -matching andBS -unification
algorithms. This interplay between axioms, equations, and rewrite rules can ultimately
make the specification RS very efficient and have modest memory requirements.

4 Checking Admissibility, Invertibility, and Permutability

This section presents rewrite- and narrowing-based techniques for proving admissibil-
ity, invertibility, and permutability in sequent systems. These techniques are presented
as metatheorems about sequent systems and provide sufficient conditions for proving
the desired properties.

The techniques introduced in this section assume the existence of an unification
algorithm for multisets (or sets) of sequents. Note that for a combination of free and
associative and/or commutative and/or identity axioms, except for symbols that are as-
sociative but not commutative, a finitary unification algorithm CSU exists. Moreover, it
is assumed that a sequent system S is a set of inference rules with sequents in the set
TΣS (X), where ΣS is an order-sorted signature (see Sec. 3). The expression S1 ∪ S2

denotes the extension of the sequent system S1 by adding the inference rules of S2 (and
vice versa); in this case, the sequents in the resulting sequent system S1 ∪ S2 are terms
in the signature ΣS1

∪ ΣS2
. Finally, given a term t ∈ TΣS (X), with ΣS = (S,≤, F),

t ∈ T(S,≤,F∪Ct)(X) is the term obtained from t by turning each variable x ∈ vars(t)
of sort s ∈ S in the (fresh) constant x of sort s and where Ct = {x ∣ x ∈ vars(t)}

Definition 5 introduces a notion of admissibility of a rule relative to another rule.

Definition 5. Let
S1 ⋯ Sm

S
rs be a rule, S be a sequent system and

T1 ⋯ Tn
T

rt be
an inference rule in S. The rule rs is admissible relative to rt in S iff

(∀θ ∈ CSU(S, T))S∪{Tjθ ∣ j ∈ 1..n}∪ ⋃
i∈1..m

⋃
j∈1..n

{Sγ ∣ γ ∈ CSU(Si, Tjθ)}¬ Sθ,

where the variables in S and T are assumed disjoint.

A rule is admissible (see Sec. 2) if the set of theorems of the sequent system does not
change when that rule is added to the existing rules of the system. Proving admissibility
of a rule requires inductive reasoning on the length of the derivation and case analysis
on each rule of the sequent system. The idea is that each substitution θ ∈ CSU(S, T)
in Definition 5 covers (potentially) infinitely many proofs in which ground instances of
Sθ(= Tθ) can be obtained. Since the intention is to be able to perform such an inference
without rs, the goal is to proof Sθ in S under some additional inductive hypothesis
obtained from the premises of rs and rt. Note that since Tθ can be proved (starting
with rt), then each one of the premises of rt can be used as a hypothesis, i.e., the set
{Tjθ ∣ j ∈ 1..n} of ground sequents can be assumed. Moreover, it can be assumed,

by induction, that rs can be used to proof Tjθ if possible, namely, the set {Sγ ∣ γ ∈
CSU(Si, Tjθ)} can be assumed for 1 ≤ i ≤ m and 1 ≤ j ≤ n. If the goal Sθ can be
proved for each unifier θ under the given hypothesis, then rs is considered admissible
relative to rt. Since a complete set of unifiers is finite for sequents, as assumed in this
section for any sequent system S, then there are finitely many proof obligations to
discharge in order to check if a rule is admissible relative to a rule in a sequent system.

Theorem 1 presents sufficient conditions for the admissibility of rule in a sequent
system based on the notion of admissibility relative to a rule.

Theorem 1. Let S be a sequent system and rs an inference rule. If rs is admissible
relative to each rt in S, then rs is admissible in S .

Next definition introduces a notion of invertibility of a rule relative to another rule.

Definition 6. Let S be a sequent system and
S1 ⋯ Sm

S
rs,

T1 ⋯ Tn
T

rt be inference
rules in S. The rule rs is invertible relative to rt iff

(∀θ ∈ CSU(S, T))S ∪ {Tjθ ∣ j ∈ 1..n} ∪ ⋃
i∈1..m

⋃
j∈1..n

{Siγ ∣ γ ∈ CSU(S, Tjθ)}¬ ⋀
i∈1..m

Siθ,

where the variables in S and T are assumed disjoint.

For checking invertibility of a rule rs relative to a rule rt, both in a sequent system
S, the goal is to show that each premise in the former is a consequence of the latter
by using some inductive hypothesis that are obtained from the structure of the rules.
For each θ ∈ CSU(S, T), these hypotheses are all the premise sequents Tjθ of rt that
can be used for obtaining Tθ. Each ground term Siγ can also be used as an inductive
hypothesis since any application of rs on Tjθ has shorter derivation than that of Tθ.

Theorem 2 presents sufficient conditions for checking the invertibility of a rule in a
sequent system.

Theorem 2. Let S be a sequent system and rs an inference rule in S. If rs is invertible
relative to each rt in S, then rs is invertible in S.

This section is concluded by establishing conditions to prove permutability of rules.

Theorem 3. Let S be a sequent system and
S1 ⋯ Sm

S
rs,

T1 ⋯ Tn
T

rt be inference
rules in S. Then rs ↓ rt if

(∀θ ∈ CSU(S, T))(∀i ∈ 1..m)(∀γ ∈ CSU(T, Siθ))

S ∪ {Tjγ ∣ j ∈ 1..n} ∪ {Skθ ∣ k ∈ 1..m ∧ k ≠ i}¬ ⋀
j∈1..n

Tjθ,

where the variables in S and T are assumed disjoint.

Checking permutability does not require induction but a proof transformation (see
Sec. 2). As with admissibility and invertibility before, all unifiers between the conclu-
sions S and T are considered. There is a proof obligation for each premise Siθ where
rt can be applied (∀γ expression). In each of such proof obligations the goal is to show
that the premisses of rt are provable (Tjθ on the right). For that, it can be assumed that
the premisses of rt applied to the given premise of rs are provable (Tjγ expression).
Moreover, all the other premisses of rs are also assumed as provable (Skθ expression).

5 Reflective Implementation

The design and implementation of a prototype that offers support for the narrowing pro-
cedures introduced in Sec. 4 is discussed. The reader is referred to http://subsell.
logic.at/theorem-maude for the implementation and the experiments summa-
rized in Sec. 6.

http://subsell.logic.at/theorem-maude
http://subsell.logic.at/theorem-maude

Sequent System Specification. The reflective implementation relies on the following
functional module that needs to be realized by the object-logic (i.e., the system to be
analyzed):

fmod OBJ-LOGIC is
sorts Sequent SSequent . --- sequents and multisets of sequents
subsort Sequent < SSequent .
op proved : -> Sequent [ctor] . --- Proved sequent
op _,_ : SSequent SSequent -> SSequent [ctor assoc comm id: proved] .

endfm

The sort Sequent is used to represent sequent terms and the sort SSequent for
representing multisets of sequent terms separated by comma. The constant proved is
the identity of the multiset constructor and represents the empty sequent (i.e., no goals
need to be discharged).

When formalizing a sequent system S as a rewrite theory RS there are two options
(backwards or forwards) for expressing an inference rule as rewrite rule. In this paper,
the backwards reasoning option is adopted, which rewrites the target goal of an infer-
ence system to its premises. Hence, for instance, the rule ∧L in G3ip will be expressed
as a rewrite rule of the form Γ, F ∧ G ⊢ C → Γ, F,G ⊢ C. The implementation
assumes also an specific encoding for the inference rules as follows.

Definition 7 (Encoding logical rules). A sequent rule
S1 ⋯ Sm

S
rs is encoded in the

reflective implementation as:
rl [rs] : S => proved . if m = 0; and
rl [rs] : S => S1, ..., Sm . if m > 0.

The implementation requires a module with any (reasonable) concrete syntax for
formulas and sequents, and adhering to the encoding of inference rules above.

Example 1 (Specification of G3ip). The following snippet of code specifies the syntax
for the propositional intuitionistic logic:

fmod FORMULA-PROP is
sorts Prop Formula SFormula . --- Atomic propositions, Formulas and sets of formulas
subsort Prop < Formula < SFormula .
op p : Nat -> Prop [ctor] . --- atomic Propositions
ops False True : -> Formula [ctor] . --- False and True
ops _-->_ _/_ _\/_ : Formula Formula -> Formula [ctor] . --- connectives
op * : -> SFormula . --- empty set of formulas
op _;_ : SFormula SFormula -> SFormula [prec 40 ctor assoc comm id: *] .
eq F:Formula ; F:Formula = F:Formula . --- idempotency

endfm

The following module extends the module OBJ-LOGIC and specifies the inference
rules of G3ip .

mod G3i is
pr FORMULA-PROP .
inc OBJ-LOGIC .
--- Constructor for sequents .
op _|--_ : SFormula SFormula -> Sequent [ctor prec 50 format(b o r o)] .
--- Rules
rl [I] : P ; C |-- P => proved .
rl [AndL] : F /\ G ; C |-- H => F ; G ; C |-- H .
rl [AndR] : C |-- F /\ G => (C |-- F) , (C |-- G) .

rl [ImpL] : C ; F --> G |-- H => (C ; F --> G |-- F) , (C ; G |-- H) .
...

endm

Property Specification. As noted in Sec. 4, the properties of interest are specified by a
sequent system S and an inference rule r. Given a rewrite theory RS representing S, the
inference rule r to be checked admissible, invertible, or permutable in S is represented
by a rewrite rule, expressed as a meta-term, in the syntax of S.

Consider the property of invertibility of ∧R in the G3ip system, specified as:

op Th-InvAndR : -> Rule .
eq Th-InvAndR =

(rl ’_|--_[’C:SFormula,’_/_[’F:Formula,’G:Formula]] =>
’_‘,_[’_|--_[’C:SFormula,’F:Formula],’_|--_[’C:SFormula,’G:Formula]]
[label(’Th-inv-andR)].) .

which is the meta-representation of the rule

rl [Th-inv-andR] : C |-- F /\ G => (C |-- F , C |-- G) .

Special care needs to be taken when the inference rule to check has extra variables
in the premises. In general, the rewrite rule associated to such an inference rule would
have extra variables in the right-hand side and could not be used for execution (unless
a strategy is provided). Nevertheless, these extra variables can be encoded as fresh con-
stants and obtain a rewrite rule that is executable (see Weakening in the next section).

The Algorithms. The reflective implementation offers functions that implement algo-
rithms for each one of the theorems in Sec. 4; for sequent system RS and rule r:

admissible? checks if r is admissible in S by validating the conditions in Thm. 1.
invertible? checks if r is invertible in S by validating the conditions in Thm. 2.
permutes? checks if r permutes in S by validating the conditions in Thm. 3.

The output of each one of these algorithms is a list of tests, one per rule in S . The
test for a rule rt indicates whether r has the desired property relative to rt. Since the
entailment relation is, in general, undecidable, all the tests are performed up to a given
search depth and, when it is reached, the procedure returns false. Hence the proce-
dures are sound (in the sense of the theorems in Sec. 4) but not complete (due to the
undecidability of the logic and the fact that the goals are inductive properties). The im-
plementation includes also functions implementing macros based on these algorithms,
e.g., analyzePermutation for checking the permutation status of all rules.

The implementation of these algorithms heavily use Maude’s META-LEVEL mod-
ule. In particular, the metaDisjointUnify function is used for computing the com-
plete sets of unifiers and metaSearch for proof-search. Other features of this module
are used, e.g., for transforming variables into constants, requiring module transforma-
tions at the meta-level.

6 Case Studies

This section presents different sequent calculi that can be checked with the algorithms
presented in Sec. 5. For each calculi, the results about invertibility and admissibility of

the structural rules W (weakening) and C (contraction), and permutability are summa-
rized in a table using the following convention:

– ✓T means that the property holds for the given system and the tool is able to prove
it (thus returning true).

– ✓F means that the property does not hold for the given system and the tool returns
false.

– ∼DN means that the property holds but the tool was not able to prove it (then re-
turning false).

6.1 System G3ip

An important remark is that propositional intuitionistic logic is decidable. However,
since the rule ⊃L replicates the principal formula in the left premise, a careless specifi-
cation of this rule can result in infinite computations. For instance, the sequent p ⊃ q ⊢
q is not provable. However, a proof search trying to rewrite that sequent into proved
will generate the infinite chain of goals (p ⊃ q ⊢ p), (p ⊃ q ⊢ p), (p ⊃ q ⊢ p),⋯.

One solution for this problem is to consider sets instead of multisets of sequents (i.e,
by adding an equation for idempotency in the module SEQUENT). This solution is akin
to the procedure of detecting whether a sequent in a derivation tree is equal to one of its
predecessors. In this way a complete decision procedure for propositional intuitionistic
logic can be obtained.

The results for invertibility of rules and admissibility of structural rules for G3ip are
summarized below.

Invertibilities Structural G3ipW G3ip+inv

I ∨L ∨Ri
∧L ∧R ⊤R ⊤L ⊥L ⊃L ⊃R ⊃

pR
L W C ⊃R C

✓T ✓T ✓F ✓T ✓T ✓T ✓T ✓T ✓F ∼DN ✓T ✓T ∼DN ✓T ✓T

The non-invertible rules in this system are ∨Ri
and ⊃L. Note that ⊃R is invertible

but the implementation failed to prove it. The reason is that the proof for this case
requires admissibility of W. More precisely, consider the provable sequent Γ,A ⊃ B ⊢

F ⊃ G and suppose that the last applied rule was
Γ,A ⊃ B ⊢ A Γ,B ⊢ F ⊃ G

Γ,A ⊃ B ⊢ F ⊃ G
⊃L

By inductive hypothesis on the right premise, Γ,B, F ⊢ G is provable. Considering
the left premise, since Γ,A ⊃ B ⊢ A is provable, admissibility of weakening implies
that Γ,A ⊃ B,F ⊢ A is also provable, hence Γ,A ⊃ B,F ⊢ G is provable and the
result follows. It turns out that the admissibility of W is automatically provable by the
algorithms. Let G3ipW denote the system G3ip with the admissible rule W added: in
this system, the invertibility of ⊃R can be automatically proved.

Although the rule ⊃L is not invertible, it is invertible in its right premise. That is,
if Γ, F ⊃ G ⊢ C is provable, then so is Γ,G ⊢ C. This result can also be proved
by induction on the height of the derivation and the implementation returns a positive
answer (this corresponds to the entry ⊃pRL in the table above).

Finally, as mentioned in Sec. 2, the proof of admissibility of contraction often re-
quires the invertibility of rules. As an example, consider the derivation

Γ,A ⊃ B ⊢ A,∆ Γ,B ⊢∆

Γ,A ⊃ B ⊢∆
⊃L

Γ,A ⊢ B

Γ ⊢ A ⊃ B,∆
⊃R

Γ ⊢ A,B,∆

Γ ⊢ A ∨B,∆
∨R

Fig. 2: The multi-conclusion intuitionistic sequent calculus mLJ.

Γ,F ⊃ G,F ⊃ G ⊢ F Γ,G,F ⊃ G ⊢ C

Γ,F ⊃ G,F ⊃ G ⊢ C
⊃L

By inductive hypothesis on the left premise, Γ, F ⊃ G ⊢ F is provable and by in-
vertibility of ⊃L on the right premise, Γ,G,G ⊢ C is provable and the result follows.
Hence, by adding all the invertibilities already proved (system G3ip+inv in the table),
the tool was able to prove admissibility of the rule C.

As shown in Sec. 2, the proof of permutability of rules requires the invertibility
lemmas and admissibility of weakening (already proved). Using the system G3ip+inv ,
the tool was able to prove all the permutability lemmas for propositional intuitionistic
logic. The following table summarizes some of theses results.

∧R ↓ ∧L ∧L ↓ ∧R ∨i ↓ ∧L ∧L ↓ ∨i ∨Ri
↓ ∨L ∨L ↓ ∨Ri

∨Ri
↓⊃L ⊃L↓ ∨Ri

⊃L↓⊃L ∧L ↓⊃R ⊃R↓ ∧L

✓T ✓T ✓T ✓T ✓F ✓T ✓T ✓T ✓T ✓T ✓T

Note that the approach followed for G3ip, G3ipW and G3ip+inv in this section pro-
vides an example of a modular proof, where theorems are added as hypothesis to the
system. In this way, more involved properties can be discarded.

6.2 Multi-conclusion Propositional Intuitionistic Logic (mLJ)

Maehara’s mLJ [14] is a multiple conclusion system for intuitionistic logic. The rules
are exactly the same as in G3ip, except for the ∨R and implication (see Fig. 2). While
the left rule copies the implication in the left premise, the right implication forces all
formulas in the succedent of the conclusion sequent to be weakened (when viewed
bottom-up). This guarantees that, on the application of the ⊃R rule on A ⊃ B, the
formulaB should be proved assuming only the pre-existent antecedent context extended
with the formula A. This creates an interdependency between A and B.

The introduction rules in mLJ are invertible, with the exception of ⊃R. In particular,
two different applications of ⊃R (on the same sequent) do not permute. For instance,

from the premise of
Γ,A ⊢ B

Γ ⊢ A ⊃ B,C ⊃D,∆
⊃R the sequent Γ,C ⊢ D cannot be proved.

The results for this system are summarized in the table below:

Invertibilities Structural mLJ+inv

I ∨L ∨R ∧L ∧R ⊤R ⊤L ⊥L ⊃L ⊃R W C C

✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓F ✓T ∼DN ✓T

6.3 Propositional Classical Logic (G3cp)

G3cp [21] is a well known two-sided sequent system for classical logic, where the struc-
tural rules are implicit and all the rules are invertible. Differently from G3ip, weakening

⊢ p
⊥
, p

I ⊢ Γ1, A ⊢ Γ2, B

⊢ Γ1, Γ2, A⊗B
⊗
⊢ 1

1
⊢ Γ,A,B

⊢ Γ,AOB
O ⊢ Γ
⊢ Γ,⊥

⊥
⊢ Γ,A ⊢ Γ,B

⊢ Γ,A&B
&

⊢ Γ,⊤
⊤

⊢ Γ,A

⊢ Γ,A⊕B
⊕1

⊢ Γ,B

⊢ Γ,A⊕B
⊕2

⊢ ?A1, . . . , ?An, A

⊢ ?A1, . . . , ?An, !A
!
⊢ Γ,A

⊢ Γ, ?A
?

⊢ Γ
⊢ Γ, ?A

W
⊢ Γ, ?A, ?A

⊢ Γ, ?A
C

Fig. 3: One-sided Monadic system LL.

⊢ Θ,F ∶ Γ

⊢ Θ ∶ Γ, ?F
?
⊢ Θ,F ∶ Γ,F

⊢ Θ,F ∶ Γ
copy

⊢ Θ ∶ Γ1,A ⊢ Θ ∶ Γ2,B

⊢ Θ ∶ Γ1, Γ2,A⊗B
⊗

Fig. 4: Some rules of the dyadic system D−LL.

is not needed for the proof of invertibility of ⊃R. However, contraction still depends on
invertibility results. The results are summarized below:

Invertibilities Structural G3cp+inv

I ∨L ∨R ∧L ∧R ⊤R ⊤L ⊥L ⊃L ⊃R W C C

✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ∼DN ✓T

Assuming the already proved invertibility lemmas, the prover is able to show that, for
all pair of rules r1, r2 in the system, r1 ↓ r2.

6.4 Linear Logic (LL)

Linear logic [9] is a resource-conscious logic, in the sense that formulas are consumed
when used during proofs, unless they are marked with the exponential ? (whose dual is
!), in which case, they behave classically. Propositional LL connectives include the ad-
ditive conjunction & and disjunction ⊕ and their multiplicative versions ⊗ and O. The
proof system for one-sided (classical) propositional linear logic is depicted in Fig. 3.

Since formulas of the form ?F can be contracted and weakened, such formulas can
be treated as in classical logic, while the remaining formulas are treated linearly. This
is reflected into the syntax of the so called dyadic sequents (Fig. 4) which have two
contexts: Θ is a set of formulas and Γ a multiset of formulas. The sequent ⊢ Θ ∶ Γ is
interpreted as the linear logic sequent ⊢ ?Θ,Γ where ?Θ = {?A ∣ A ∈ Θ}. It is then
possible to define a proof system without explicit weakening and contraction (system
D−LL in Fig 4). The complete dyadic proof system can be found in [1].

Since propositional LL is undecidable [13], infinite computations are possible. In
this case study, a search bound is used to force termination of the implementation.
Since all the theorems include a very controlled number of connectives (usually the 2
connectives involved in the application of the rules), this seems to be a fair solution.

For the monadic (LL) and the dyadic (D−LL) systems, the results of invertibility of
rules are summarized in the next table.

LL and D−LL LL D−LL D−LL+Wc

1 ⊥ ⊤ ⊗ & O ⊕i ! ? ?C ?W ? copy ?

✓T ✓T ✓T ✓F ✓T ✓T ✓F ✓F ✓F ✓T ✓F ∼DN ✓F ✓T

Γ ⊢ A

Γ
′
,□Γ ⊢ □A,∆

k
Γ,□A,A ⊢∆

Γ,□A ⊢∆
T

□Γ ⊢ A

Γ
′
,□Γ ⊢ □A,∆

4

Fig. 5: The modal sequent rules for K (k) and S4 (k + T + 4)

In LL, the rules ? (deriliction) and ?W (weakening) are not invertible, while ?C (con-
traction) is invertible. In D−LL, the rule ? is invertible. However, the proof of this
theorem fails for the case ⊗. To obtain a proof, first admissibility of weakening for the
classical context is proved: if ⊢ Θ ∶ Γ is provable, then ⊢ Θ,Θ

′ ∶ Γ is provable (rule
Wc). ? is proved invertible in D−LL+Wc

.
Finally, the prover was able to discharge the following theorems:

- (LL) If⊢ Γ, !F then⊢ Γ, F
- (D−LL) If⊢ Θ ∶ Γ, !F then⊢ Θ ∶ Γ, F .

6.5 Normal Modal Logics: K and S4

A modal is an expression (like necessarily or possibly) that is used to qualify the truth
of a judgement, e.g., □A can be read as “the formula A is necessarily true”. The most
familiar modal logics are constructed from the modal logic K and its extensions are
called normal modal logics. The system S4 is an extension of K where □ □ A ≡ □A
holds. Fig. 5 presents the modal sequent rules for K and S4.

All the propositional rules are invertible in both K and S4, k and 4 are not invertible
(due to the implicit weakening) while T is invertible. Similar to the previous systems,
the admissibility of W follows immediately and the proof of admissibility of C requires
as hypotheses the already proved invertibility lemmas:

Invertibilities Structural Modal Rules K+inv S4+inv

I ∨L ∨R ∧L ∧R ⊤R ⊤L ⊥L ⊃L ⊃R W C k 4 T C C

✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ∼DN ✓F ✓F ✓T ✓T ✓T

7 Related Work and Concluding Remarks

The proposal of many proof systems for many logics demanded trustful methods for
determining good properties. In general, the checking was normally done via a case-
by-case analysis, by trying exhaustively all the possible combinations of application of
rules in a system. The advent of automated reasoning changed completely the scenery,
since theorems started being proved automatically into meta-level frameworks. This has
brought a whole new perspective to the field of proof theory: useless proof search steps
usually singular for a specific logic were replaced by the development of general and
universal methods for providing good automation strategies. This implies determining
general conceptual characteristics of logical systems as well as choosing adequate meta-
level frameworks that can capture (and reason about) them in a natural way.

This work moves forward in this direction: it proposes a general, natural and uni-
form way of proving key properties in sequent systems using the rewriting framework,

that enables modular proofs of meta-level properties of logical systems. Permutabil-
ity of rules is a nice start case study since it is heavily used in cut-elimination proofs.
Moreover, permutability has a rewriting counterpart: showing that applying a rule a r1
followed by a rule r2 is the same as applying r2 then r1 can be interpreted as having the
confluence property on the application of these two rules. The proof of permutability
itself does not need inductive methods explicitly: they are hidden in other needed results
like admissibility of weakening and invertibility of rules. The approach adopted in this
work profits, as much as possible, from modularity. First test permutability without any
other assumptions; then prove (if possible) admissibility of weakening and invertibility
theorems; finally, add the proven theorems modularly to the system and re-run the per-
mutability test: some cases for which the tool previously failed can now be proved. The
same core algorithm can be used for proving admissibility of contraction, for example,
which also depends on invertibility results.

The choice of rewriting as a meta-level framework brought advantages over some
other options in the literature. Indeed, while approaches using logical frameworks de-
pend heavily on the specification method and/or the implicit properties of the meta and
object logics, rewriting logic enables the specification of the rules as they are actually
written in text and figures. Consider for example the LF framework [20], based on intu-
itionistic logic, where the left context is handled by the framework as a set. Specifying
sequent systems based on multisets requires elaborated mechanisms, which makes the
encoding far from being natural. Moving from intuitionistic to linear logic solves this
problem [5, 16], but still several sequent systems cannot be naturally specified into the
LL framework, like mLJ. This can be partially fixed by adding subexponentials to linear
logic (SELL) [18, 19], but then the encoding, although natural, is often non-trivial and
it cannot be done automatically. Moreover, several logical systems cannot be naturally
specified in SELL, like K. All in all, this paper is yet another proof that rewriting is
an innovative and elegant framework for reasoning about logical systems, since results
and systems themselves can be modularly extended. In fact, the approach here can be
extended to reason about a large class of systems, including normal (multi-)modal [12]
and paraconsistent [10] sequent systems. The authors conjecture that the same approach
can be used for extensions of sequent systems themselves, like nested [4] or linear
nested [11] systems. This is an interesting future research path worth pursuing.

Finally, a word about cut-elimination. The usual cut-elimination proof strategy can
be summarized by the following steps: (i) transforming a proof with cuts into a proof
with principal cuts; (ii) transforming a proof with principal cuts into a proof with atomic
cuts; (iii) transforming a proof with atomic cuts into a cut-free proof. While step (ii)
is not problematic (see e.g., [16]), steps (i) and (iii) strongly depend on the ability of
showing permutability of rules. With the results shown in this work, it seems reasonable
to envisage using the techniques and their implementation in order to fully automate
cut-elimination proofs for various proof systems. It is worth noticing, though, that the
aim of this paper is more general: proving results in a modular way permits maximizing
their use in other applications as well. For example, it would be interesting to investigate
further the role of invertible rules as equational rules in rewriting systems. While this
idea sounds more than reasonable, it is necessary to check whether promoting invertible
rules to equations preserves completeness of the system (e.g., the resulting equational

theory needs to be, at least, ground convergent and terminating). If the answer to this
question is yes for a large class of systems, then the approach presented here also opens
the possibility, e.g., to automatically propose focused systems [1].

References

1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and
Computation, 2(3):297–347, 1992.

2. D. Basin, M. Clavel, and J. Meseguer. Reflective metalogical frameworks. ACM Transactions
on Computational Logic, 5(3):528–576, 2004.

3. R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories. Theor.
Comput. Sci., 360(1-3):386–414, 2006.

4. K. Brünnler. Deep sequent systems for modal logic. Arch. Math. Log., 48:551–577, 2009.
5. I. Cervesato and F. Pfenning. A Linear Logical Framework. Inf. Comp., 179(1):19–75, 2002.
6. A. Ciabattoni, N. Galatos, and K. Terui. From axioms to analytic rules in nonclassical logics.

In LICS, pages 229–240. IEEE Computer Society Press, 2008.
7. M. Clavel, editor. All about Maude - a High-Performance Logical Framework: How to

Specify, Program, and Verify Systems in Rewriting Logic. Number 4350 in LNCS. Springer-
Verlag, 2007.

8. G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68–131. North-Holland, 1969.

9. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
10. O. Lahav, J. Marcos, and Y. Zohar. Sequent systems for negative modalities. Logica Univer-

salis, 11(3):345–382, 2017.
11. B. Lellmann. Linear nested sequents, 2-sequents and hypersequents. In 24th TABLEAUX,

pages 135–150, 2015.
12. B. Lellmann and E. Pimentel. Proof search in nested sequent calculi. In LPAR-20, pages

558–574, 2015.
13. P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for propositional

linear logic. Annals Pure Applied Logic, 56:239–311, 1992.
14. S. Maehara. Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Mathe-

matical Journal, pages 45–64, 1954.
15. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor. Comput.

Sci., 96(1):73–155, 1992.
16. D. Miller and E. Pimentel. A formal framework for specifying sequent calculus proof sys-

tems. Theor. Comput. Sci., 474:98–116, 2013.
17. D. Miller and A. Saurin. From proofs to focused proofs: a modular proof of focalization in

linear logic. In CSL, volume 4646 of LNCS, pages 405–419, 2007.
18. V. Nigam, E. Pimentel, and G. Reis. An extended framework for specifying and reasoning

about proof systems. J. Log. Comput., 26(2):539–576, 2016.
19. V. Nigam, G. Reis, and L. Lima. Quati: An automated tool for proving permutation lemmas.

In 7th IJCAR, pages 255–261, 2014.
20. F. Pfenning. Structural cut elimination I. intuitionistic and classical logic. Information and

Computation, 157(1/2):84–141, Mar. 2000.
21. A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Univ. Press, 1996.
22. P. Viry. Equational rules for rewriting logic. Theor. Comput. Sci., 285(2):487–517, 2002.

	 Proving Structural Properties of Sequent Systems in Rewriting Logic

