
An Assertion language for slicing Constraint Logic1

Languages2

M. Falaschi1 C. Olarte23

1 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche4

Università di Siena, Italy.5

moreno.falaschi@unisi.it.6
2 ECT, Universidade Federal do Rio Grande do Norte, Brazil7

carlos.olarte@gmail.com.8

Abstract. Constraint Logic Programming is a language scheme for combining9

two declarative paradigms: constraint solving and logic programming. Concur-10

rent Constraint Programming (CCP) is a declarative model for concurrency where11

agents interact by telling and asking constraints (pieces of information) in a12

shared store. In a previous paper we have developed a framework for dynamic13

slicing of CCP. Slicing is useful for debugging. The main idea in dynamic slicing14

is that the user is able to recognize that a partial computation is wrong. Hence the15

user marks some parts of the final state (a subset of the constraints and processes),16

which correspond to the data and processes that she wants to emphasize and study17

more deeply. Then, an automatic process of slicing begins, and the partial com-18

putation is “depurated”, by removing the information which is not relevant to19

compute the emphasized information. In this paper we extend the framework to20

Constraint Logic Programs, generalizing the previous work. Moreover, we make21

one step further in the direction of automatizing the slicing process. We provide22

an assertion language suitable for these languages, which allows the user to spec-23

ify some properties of the computations in her program. If a state in a compu-24

tation does not satisfy an assertion then some “wrong” information is identified25

and an automatic slicing process can start. We show that our framework can be26

integrated with the previous semi-automatic one, giving the user more choices27

and flexibility. We show by means of examples and experiments the usefulness28

of our approach.29

Keywords: CLP, Dynamic slicing, Debugging, Assertion language.30

1 Introduction31

Constraint Logic Programming (CLP) is a language scheme [14] for combining two32

declarative paradigms: constraint solving and logic programming ([11] gives an overview33

of the various languages of the scheme and a variety of applicative areas in which CLP34

proved successful). Concurrent constraint programming (CCP) [19] (see a survey in35

[17]) combines concurrency primitives with the ability to deal with constraints, and36

hence, with partial information. The notion of concurrency is based upon the shared-37

variables communication model. CCP is intended for reasoning, modeling and pro-38

gramming concurrent agents (or processes) that interact with each other and their en-39

vironment by posting and asking information in a medium, a so-called store. CCP is40

a very flexible model and has been applied to an increasing number of different fields41

such as probabilistic and stochastic, timed and mobile systems, and more recently to42

social networks with spatial and epistemic behaviors [17].43

One crucial problem with constraint logic languages is to define appropriate de-44

bugging tools. Various techniques and several works have been defined for debugging45

these languages. Abstract interpretation techniques have been considered (e.g. in [4, 5,46

9]) as well as (abstract) declarative debuggers following the seminal work of Shapiro47

[21]. However, these techniques are approximated (case of abstract interpretation) or it48

can be difficult to apply them when dealing with complex programs (case of declarative49

debugging) as the user should answer to too many questions.50

In this paper we follow a technique inspired by slicing. Slicing was introduced in51

some pioneer works by Mark Weiser [24]. It was originally defined as a static technique,52

independent of any particular input of the program. Then, the technique was extended53

by introducing the so called dynamic program slicing [13]. This technique is useful for54

simplifying the debugging process, by selecting a portion of the program containing the55

faulty code. In the context of constraint logic languages we define a tool able to inter-56

act with the user and filter, in a given computation, the information which is relevant57

to a particular observation or result. In other words, the programmer could mark the58

information (constraints and agents or atoms) that she is interested to check in a partic-59

ular computation that she suspects to be wrong. Then, a corresponding depurated par-60

tial computation is obtained automatically, where only the information relevant to the61

marked parts is present. Dynamic program slicing has been applied to several program-62

ming paradigms, for instance to imperative programming [13], functional programming63

[16], Term Rewriting [1], and functional logic programming [2]. See [12] for a survey.64

In a previous paper [8] we presented the first formal framework for CCP dynamic65

slicing. Our aim was to help the programmer to debug her program, in cases where she66

could not find the bugs by using other debuggers. In this paper we investigate an exten-67

sion of the framework to Constraint Logic Programs (CLP), and we try to automatize68

the slicing process by integrating it with a suitable assertion language. The extension69

to CLP is not immediate, as while for CCP programs non-deterministic choices give70

rise to one single computation, in CLP all computations corresponding to different non-71

deterministic choices can be followed and can lead to different solutions. So, some72

rethinking of the the framework is necessary. We show that it is possible to define a73

transformation from CLP programs to CCP programs, which allows to show that the74

set of observables of one CLP program and of the corresponding translated CCP pro-75

gram correspond. This result also shows that the computations in the two languages are76

pretty similar and the framework for CCP can be extended to deal with CLP programs.77

Our framework [8] consists of three main steps. First the standard operational seman-78

tics of the sliced language is extended to a “collecting semantics” that adds the needed79

information for the slicer. Second, we consider several analyses of the faulty situation80

based on error symptoms, including causality, variable dependencies, unexpected be-81

haviors and store inconsistencies. This second step was left to the user’s responsibility82

in our previous work [8]. The user had to examine a state of a partial computation that83

she recognized to be wrong. Then she had to mark some information (a subset of con-84

straints in the last state) that she wanted to study further, removing the information in85

2

the computation not relevant to derive the marked one. Thirdly, we considered an auto-86

matic marking algorithm of the redundant items and define a trace slice. This algorithm87

was flexible and applicable to timed extensions of CCP [18]. Here, for CLP programs88

we introduce also the possibility to mark atoms, besides constraints.89

We believe that the second step above, namely identifying the right state and the90

relevant information to be marked, can be difficult for the user and we believe that it91

is possible to improve automatization of this step. For this reason, in this paper we92

introduce a specialized assertion language which allows the user to state properties93

of the computations in her program. If a state in a computation does not satisfy an94

assertion then some “wrong” information is identified and an automatic slicing process95

can start. We show that assertions can be integrated in our previous semi-automatic96

framework [8], giving the user more choices and flexibility. The assertion language is97

a good companion to the already implemented tool for the slicing of CCPprograms to98

automatically deduce (possible) symptoms and stop the computation when need it. The99

framework can also be applied to timed variants of CCP.100

Organization. Section 2 describes CCP and CLP and their operational semantics. In101

this section we also introduce a translation from CLP to CCP programs and prove a102

correspondence theorem between successful computations. In Section 3 we recall the103

slicing technique for CCP and extend it to CLP. Then, in Section 4 we present our104

specialized assertion language and describe its main operators and functionalities. In105

Section 4.2 we show some examples to illustrate the expressive power of our extension,106

and that it can be integrated into the former tool. Within our examples we show how107

to automatically debug a biochemical system specified in timed CCP and one classical108

search problem in CLP. Finally, Section 5 discusses some related work and concludes.109

2 Constraint Logic Languages110

In this section we define an operational semantics suitable for both, Constraint Logic111

Programming [11] and for CCP programs. We start by defining CCP programs and112

then we obtain CLP programs by restricting the set of operators in CCP. More pre-113

cisely, we remove the synchronization operator (ask (c) then P) and we interpret114

non-determinism in a different manner. In practice, in CLP, we have to consider non-115

determinism of the type “don’t know” [20], which means that each predicate call can116

be reduced by using each rule which defines such predicate. This is different from the117

kind of non-determinism in CCP, where the choice operator selects randomly one of the118

choices whose ask guard is entailed by the constraints in the current store.119

Processes in CCP interact with each other by telling and asking constraints (pieces120

of information) in a common store of partial information. The type of constraints is121

not fixed but parametric in a constraint system (CS). The notion of CS is central to both122

CCP and CLP. Intuitively, a CS provides a signature from which constraints can be built123

from basic tokens (e.g., predicate symbols), and two basic operations: conjunction (t)124

and variable hiding (∃). The CS defines also an entailment relation (|=) specifying inter-125

dependencies between constraints: c |= d means that the information d can be deduced126

from the information c. Following [6], a cylindric algebra gives a general notion of127

constraint system (see the details, e.g., in [9]).128

3

A cylindric constraint system is a structure C = 〈C,≤,t,t,f,Var ,∃, D〉 s.t.129

〈C,≤,t,t,f〉 is a complete algebraic lattice with t the lub operation (representing130

conjunction). Elements in C are called constraints with typical elements c, c′, d, d′...,131

and t, f the least and the greatest elements. If c ≤ d, we say that d entails c and we132

write d |= c. Var is a denumerable set of variables and for each x ∈ Var the function133

∃x : C → C is a cylindrification operator (representing information hiding). As usual,134

∃x.c binds x in c. We use fv(·) (resp. bv(·)) to denote the set of free (resp. bound)135

variables. For each x, y ∈ Var , the constraint dxy ∈ D is a diagonal element can be136

thought of as the equality x = y, useful to define substitutions of the form [t/x] .137

As an example, consider the finite domain constraint system (FD) [10]. This system138

assumes variables to range over finite domains and, in addition to equality, one may139

have predicates that restrict the possible values of a variable as in x < 42.140

The language of CCP processes. In the spirit of process calculi, the language of pro-141

cesses in CCP is given by a small number of primitive operators or combinators. Pro-142

cesses are built from constraints in the underlying constraint system and the syntax:143

P,Q ::= skip | tell(c) |
∑
i∈I

ask (ci) then Pi | P ‖ Q | (localx)P | p(x)144

The process skip represents inaction. The process tell(c) adds c to the current store145

d producing the new store c t d. Given a non-empty finite set of indexes I , the process146 ∑
i∈I

ask (ci) then Pi non-deterministically chooses Pk for execution if the store en-147

tails ck. The chosen alternative, if any, precludes the others. This provides a powerful148

synchronization mechanism based on constraint entailment. When I is a singleton, we149

shall omit the “
∑

” and we simply write ask (c) then P .150

The process P ‖ Q represents the parallel (interleaved) execution of P and Q. The151

process (localx)P behaves as P and binds the variable x to be local to it. We use152

fv(P), bv(P) to denote, respectively, the set of free and bound variables of P .153

Given a process definition p(y) ∆
= P , where all free variables of P are in the set154

of pairwise distinct variables y, the process p(x) evolves into P [x/y]. A CCP program155

takes the form D.P where D is a set of process definitions and P is a process.156

The Structural Operational Semantics (SOS) of CCP is given by the transition rela-157

tion γ −→ γ′ satisfying the rules in Fig. 1. Here we follow the formulation in [7] where158

the local variables created by the program appear explicitly in the transition system and159

parallel composition of agents is identified to a multiset of agents. More precisely, a160

configuration γ is a triple of the form (X;Γ ; c), where c is a constraint representing161

the store, Γ is a multiset of processes, and X is a set of hidden (local) variables of c162

and Γ . The multiset Γ = P1, P2, . . . , Pn represents the process P1 ‖ P2 ‖ · · · ‖ Pn.163

We shall indistinguishably use both notations to denote parallel composition. More-164

over, processes are quotiented by a structural congruence relation ∼= satisfying: (STR1)165

P ∼= Q if they differ only by a renaming of bound variables (alpha conversion); (STR2)166

P ‖ Q ∼= Q ‖ P ; (STR3) P ‖ (Q ‖ R) ∼= (P ‖ Q) ‖ R; (STR4) P ‖ skip ∼= P .167

Let us briefly explain Figure 1. A tell agent tell(c) adds c to the current store d168

(Rule RTELL); the process
∑
i∈I

ask (ci) then Pi executes Pk if its corresponding guard169

ck can be entailed from the store (Rule RSUM); a local process (localx)P adds x to170

the set of hidden variable X when no clashes of variables occur (Rule RLOC). Observe171

4

(X; tell(c), Γ ; d) −→ (X; skip, Γ ; c t d)
RTELL

d |= ck k ∈ I
(X;

∑
i∈I

ask (ci) then Pi, Γ ; d) −→ (X;Pk, Γ ; d)
RSUM

x /∈ X ∪ fv(d) ∪ fv(Γ)
(X; (localx)P, Γ ; d) −→ (X ∪ {x};P, Γ ; d)

RLOC

p(y)
∆
= P ∈ D

(X; p(x), Γ ; d) −→ (X;P [x/y], Γ ; d)
RCALL

(X;Γ ; c) ∼= (X ′;Γ ′; c′) −→ (Y ′;∆′; d′) ∼= (Y ;∆; d)

(X;Γ ; c) −→ (Y ;∆; d)
REQUIV

Fig. 1: Operational semantics for CCP calculi

that Rule REQUIV can be used to do alpha conversion if the premise of RLOC cannot be172

satisfied; finally the call p(x) executes the body of the process definition (Rule RCALL).173

Definition 1 (Observables). Let −→∗ denote the reflexive and transitive closure of174

−→. If (X;Γ ; d) −→∗ (X ′;Γ ′; d′) and ∃X ′.d′ |= c we write (X;Γ ; d) ⇓c. If X = ∅175

and d = t we simply write Γ ⇓c.176

Intuitively, if P is a process then P ⇓c says that P can reach a store d strong enough177

to entail c, i.e., c is an output of P . Note that the variables in X ′ above are hidden from178

d′ since the information about them is not observable.179

2.1 The language of CLP180

A CLP program [14] is a finite set of rules of the form

A← A1, . . . , An

where A is an atom, and A1, . . . An, with n ≥ 0, are literals, i.e. either atoms or primi-181

tive constraints. An atom has the form p(t1, . . . , tm), where p is a user defined predicate182

symbol and the ti are terms from the constraint domain.183

The top-down operational semantics is given in terms of derivations from goals [14].184

A configurations takes the form (Γ ; c) where Γ (a goal) is a multiset of literals and c is185

a constraint (the current store). The reduction relation is defined as follows.186

Definition 2 (Semantics of CLP [14]). A configuration γ = (L1, ..., Li, ...Ln; c) re-187

duces to ψ, notation γ −→CLP ψ, by selecting a literal Li and then:188

1. If Li is a constraint d and d t c 6= f, then γ −→CLP (L1, ..., Ln; c t d).189

2. If Li is a constraint d and dtc = f (i.e., the conjunction of c and d is inconsistent),190

then γ −→CLP (2;f) where 2 represents the empty multiset of literals.191

3. If Li is a user defined predicate A(t1, ..., tk), then γ −→CLP (L1, ...,∆, ..., Ln; c)192

where one of the definitions for A, A(s1, ..., sk) ← A1, . . . , An, is selected and193

∆ = A1, . . . , An, s1 = t1, ..., sk = tk.194

A computation from a goal G is a (possibly infinite) sequence γ1 = (G;t) −→CLP195

γ2 −→CLP · · · . We say that a computation finishes if the last configuration γn cannot196

be reduced, i.e., γn = (2; c). If c = f then the derivation fails otherwise it succeeds.197

5

We shall use−→∗CLP to denote the reflexive and transitive closure of−→CLP . Fol-198

lowing Definition 1 for CCP, given a goal with free variables x = var(G), we shall also199

use the notation G ⇓c to denote that there is a successful computation (G;t) −→∗CLP200

(2; d) s.t. ∃x.d |= c. We note that the free variables of a goal are progressively “instan-201

tiated” during computations by adding new constraints. Finally, the answers of a goal202

G, notation G ⇓ is the set {∃var(c)\var(G)(c) | (G;t) −→∗CLP (2; c), c 6= f}.203

The CCP model traces its origins back to the ideas of computing with constraints,204

Concurrent Logic Programming and Constraint Logic Programming (CLP) [19]. Hence,205

CCP can simulate computations of such models. In Definition 3 below, we give a CCP206

interpretation to single computations in CLP programs. We emphasize that one exe-207

cution of a CCP program will give rise to a single computation (due to the kind of208

non-determinism in CCP) while the CLP abstract computation model characterizes the209

set of all possible successful derivations and corresponding answers. In other terms, for210

a given initial goal G, the CLP model defines the full set of answer constraints for G,211

while the CCP translation will compute only one of them, as only one possible deriva-212

tion will be followed.213

Definition 3 (Translation). Let C be a constraint system and H be a CLP program214

consisting of a set of clauses and G be a goal. We define the set of CCP process defini-215

tions [[H]] = D as follows. For each user defined predicate symbol p of arity j and 1..m216

defined clauses of the form p(ti1, ..., t
i
j) ← Ai1, . . . , A

i
ni , we add to D the following217

process definition218

A(x1, ..., xj)
∆
= ask (∃y1

⊔
E1) then (local z1)

∏
D1 ‖ [[A1

1]] ‖ · · · ‖ [[A1
n1

]] + ...+
ask (∃ym

⊔
Em) then (local zm)

∏
Dm ‖ [[Am1]] ‖ · · · ‖ [[Amnm]]

219

where yi = var(ti1, ..., t
i
j), zi = yi ∪ var(Ai1, ..., Aini), Di is the set of constraints220

{x1 = ti1, ..., xj = tij}, Ei = {x = t ∈ Di | var(t) 6= ∅} ,
∏
Di means tell(x1 =221

ti1) ‖ · · · ‖ tell(xj = tij) and literals are translated as [[A(t)]] = A(t) (case of atoms)222

and [[c]] = tell(c) (case of constraints). Moreover, we translate the goal [[l1, ..., ln]] as223

the process ([[l1]] ‖ · · · ‖ [[ln]]).224

We note that the head p(x) of a process definitions p(x) ∆
= P in CCP can only225

have variables while a head of a CLP rule A(t) ← B may have arbitrary terms with226

(free) variables. The set of constraints Di allows us to introduce constraints which also227

establish the connection between the formal and the actual parameters of the predicates.228

Take for instance the following CLP rules dealing with lists:229

p([] , []) .
p([H1 | L1] , [H2 | L2]) :- c(H1,H2), p(L,M) .

The translation will be

p(x, y)
∆
= ask (t) then tell(x = []) ‖ tell(y = [])+

ask (∃X
⊔
D) then (localX) (

∏
D ‖ c(H1, H2) ‖ p(L1, L2)

where D = {x = [H1|L1], y = [H2|L2]} and X = {H1, H2, L1, L2}.230

Theorem 1 (Adequacy). Let C by a constraint system,H be a set of clauses and G be231

a goal. Then, G ⇓c iff [[G]] ⇓c. (Proof in Appendix A).232

6

3 Slicing a CCP and CLP program233

Dynamic slicing is a technique that helps the user to debug her program by simplifying a234

partial execution trace, thus depurating it from parts which are irrelevant to find the bug.235

It can also help to highlight parts of the programs which have been wrongly ignored by236

the execution of a wrong piece of code. In [8] we defined a slicing technique for CCP237

programs that consisted of three main steps:238

S1 Generating a (finite) trace of the program. For that, a collecting semantics is needed239

in order to generate the (meta) information needed for the slicer.240

S2 Marking the final store, to choose some of the constraints that, according to the241

symptoms detected, should or should not be in the final store.242

S3 Computing the trace slice, to select the processes and constraints that were relevant243

to produce the (marked) final store.244

We shall briefly recall the step S1 in [8] which remains the same here. Steps S2245

and S3 need further adjustments to deal with CLP programs. In particular, we shall246

allow the user to select processes (literals in the CLP terminology) in order to start the247

debugging. Moreover, in Section 4, we provide further tools to automatize the process248

of highlighting the symptoms of erros.249

Collecting Semantics (Step S1) The slicing process requires some extra information250

from the execution of the processes. More precisely, (1) in each operational step γ → γ′,251

we need to highlight the process that was reduced; and (2) the constraints accumulated252

in the store must reflect, exactly, the contribution of each process to the store. In order to253

solve (1) and (2), we introduced in [8] the collecting semantics that extracts the needed254

meta information for the slicer. Roughly, we identify the parallel compositionQ = P1 ‖255

· · · ‖ Pn with the sequence ΓQ = P1 : i1, · · · , Pn : in where ij ∈ N is a unique identifier256

for Pj . The use of indexes allow us to distinguish, e.g., the three different occurrences257

of P in “Γ1, P : i, Γ2, P : j, (ask (c) then P) : k”. The collecting semantics uses258

transitions with labels of the form
[i]k−−→ where i is the identifier of the reduced process259

and k can be either ⊥ (undefined) or a natural number indicating the branch chosen in260

a non-deterministic choice (Rule R′SUM). This allows us to identify, unequivocally, the261

selected alternative in an execution. Finally, the store in the collecting semantics is not a262

constraint (as in Fig. 1) but a set of (atomic) constraints where {d1, · · · , dn} represents263

the store d1 t · · · t dn in the operational semantics. For that, the rule of tell(c) first264

decomposes c in its atomic components before add them to the store.265

Marking the Store (Step S2). In [8] we identified several alternatives for marking the266

final store in order to indicate the symptoms that are relevant to the slice that the pro-267

grammer wants to recompute. Let us suppose that the final configuration in a partial268

computation is (X;Γ ;S). The symptoms that something is wrong may be (and not269

limited to) the following:270

1. Causality: the user identifies, according to her knowledge, a subset S′ ⊆ S that271

needs to be explained (i.e., we need to identify the processes that produced S′).272

7

Input: - a trace γ0
[i1]k1−−−−→ · · ·

[in]kn−−−−−→ γn where γi = (Xi;Γi;Si)
- a marking (Ssliced, Γsliced) s.t. Ssliced ⊆ Sn and Γsliced ⊆ Γn

Output: a sliced trace γ′
0 −→ · · · −→ γ′

n
1 begin
2 let θ = ∅ in
3 γ′

n ← (Xn ∩ vars(Ssliced);Γsliced;Ssliced);
4 for l= n− 1 to 0 do
5 let〈θ′, c〉 = sliceProcess(γl, γl+1, il+1, kl+1, θ, S) ◦ θ in
6 Ssliced ← Ssliced ∪ Sminimal(Sl, c)
7 θ ← θ′ ◦ θ
8 γ′

l ← (Xl ∩ vars(Ssliced, Γsliced) ; Γlθ ; Sl ∩ Ssliced)
9 end

10 end
Algorithm 1: Trace Slicer. Sminimal(S, c) = ∅ if c = t; otherwise,
Sminimal(S, c) =

⋃
{S′ ⊆ S |

⊔
S′ |= c and S′ is set minimal}.

2. Variable Dependencies: The user may identify a set of relevant variables V ⊆273

fv(S) and then, we mark Ssliced = {c ∈ S | vars(c) ∩ V 6= ∅}.274

3. Unexpected behaviors: there is a constraint c entailed from the final store that is not275

expected from the intended behavior of the program. Then, one would be interested276

in the following marking Ssliced =
⋃
{S′ ⊆ S |

⊔
S′ |= c and S′ is set minimal},277

where “S′ is set minimal” means that for any S′′ ⊂ S′, S′′ 6|= c.278

4. Inconsistent output: The final store should be consistent with respect to a given279

specification (constraint) c, i.e., S in conjunction with c must not be inconsistent.280

In this case, we have Ssliced =
⋃
{S′ ⊆ S |

⊔
S′ t c |= f and S′ is set minimal}.281

For the analysis of CLP programs, it is important also to mark literals (i.e., calls to
procedures in CCP). In particular, the programmer may find that a particular goal p(x)
is not correct if x does not satisfy a constraint (e.g., x > 6). Hence, we shall consider
also markings on the set of processes, i.e., the marking can be also a subset Γsliced ⊆ Γ .
More conveniently, we shall allow markings of the form

Γsliced = {p(t1, ..., tn) ∈ Γ |
⊔
S |= F}

where p(t) is marked if its parameters satisfy a condition F (see Def. 5 in Sec. 4).282

Trace Slice (Step S3) Starting from the the pair γsliced = (Ssliced, Γsliced) denoting283

the user’s marking, we define a backward slicing step. Roughly, this step allows us to284

eliminate from the execution trace all the information not related to γsliced. For that, the285

fresh constant symbol • is used to denote an “irrelevant” constraint or process. Then,286

for instance, “c t •” results from a constraint c t d where d is irrelevant. Similarly in287

processes as, e.g., ask (c) then (P ‖ •) + •. A replacement is either a pair of the288

shape [T/i] or [T/c]. In the first (resp. second) case, the process with identifier i (resp.289

constraint c) is replaced with T . We shall use θ to denote a set of replacements and we290

call these sets as “replacing substitutions”. The composition of replacing substitutions291

θ1 and θ2 is given by the set union of θ1 and θ2, and is denoted as θ1 ◦ θ2.292

Alg. 1 extends the one in [8] to deal with the marking on processes (Γsliced). The293

last configuration (γ′n in line 3) means that we only observe the local variables of in-294

terest, i.e., those in vars(Ssliced, Γsliced) as well as the relevant processes (Γsliced) and295

8

constraints (Ssliced). The algorithm backwardly computes the slicing by accumulating296

replacing pairs in θ (line 7). The new replacing substitutions are computed by the func-297

tion sliceProcess that returns both, a replacement substitution and a constraint needed298

in the case of ask agents as explained below. Definition of sliceProcess is the same299

as in [8] and we have added it in Appendix ??. Let us give some intuitions on how it300

works. Suppose that γ
[i]k−−→ ψ. We consider each kind of process. For instance, assume a301

R′TELL transition γ = (Xγ ;Γ1, tell(c) : i, Γ2;Sγ)
[i]−→ (Xψ;Γ1, Γ2;Sψ) = ψ. We note302

thatXγ ⊆ Xψ and Sγ ⊆ Sψ and the contribution of tell(c) to the store is Sc = Sψ\Sγ .303

We replace the constraint c with its sliced version c′ where any atom ca ∈ Sc not in304

the relevant set of constraints Ssliced is replaced by •. By joining together the resulting305

atoms, and existentially quantifying the variables in Xψ \ Xγ (if any), we obtain the306

sliced constraint c′. In order to further simplify the trace, if c′ is • or ∃x.• then we307

substitute tell(c) with •. In a non-deterministic choice, all the precluded choices are308

discarded (“ + •”). Moreover, if the chosen alternative Qk does not contribute to the309

final store (i.e., ΓQθ = •), then the whole process
∑

ask (cl) then Pl becomes •.310

If this is not the case, besides the needed substitution replacement, we also return the311

constraint ck (the entailed guard of the ask agent). Note that in line 6 of Algorithm 1, we312

add to Ssliced the minimal set of constraints that “explains” the entailed guard ck. This313

allows us to highlight also the processes that added the needed information to entail314

such constraint.315

Example 1. Consider the following (wrong) CLP program:316

length([],0).
length([A | L],M) :- M = N, length(L, N).

The translation to CCP is similar to the one we gave in Section 2.1. An excerpt of a317

possible trace for the execution of the goal length([10;20], Ans). is318

[0 ; length([10;20],Ans) ; t] -->
[0 ; ask() ... + ask() ... ; t] ->
[0 ; local ... ; t] ->
[H1 L1 N1 M1 ; [10;20]= [H1|L1] || Ans=N1 || N1=M1 || length(L1, M1) ; t] ->
...
[... H2 L2 N2 M2 ; [20]=[H2 | L2] || M1=N2 || N2=M2 || length(L2, M2) ; [10;20]= [H1|L1], Ans=N1, N1=M1] ->
[... H2 L2 N2 M2 ; M1=N2 || N2=M2 || length(L2, M2) ; [10;20]= [H1|L1], Ans=N1, N1=M1, [20]=[H2 | L2]] ->
...
[... H2 L2 N2 M2 ; M2=0 ; [10;20]= [H1|L1], Ans=N1, N1=M1, [20]=[H2 | L2], M1=N2, N2=M2, L2=[]] ->
[... H2 L2 N2 M2 ; [10;20]= [H1|L1], Ans=N1, N1=M1, [20]=[H2 | L2], M1=N2, N2=M2, L2=[], M2=0]

In the last configuration, we can mark only the equalities dealing with numerical ex-319

pressions (i.e., Ans=N1,N1=M1,M1=N2,N2=M2,M2=0) and the resulting trace will320

abstract away from all the constraints and processes dealing with equalities on lists:321

[0 ; length([10;20],Ans) ; t] -->
[0 ; * + ask() ... ; t] ->
[0 ; local ... ; t] ->
[N1 M1 ; * || Ans=N1 || N1=M1 || length(L1, M1) ; t] ->
[N1 M1 ; Ans=N1 || N1=M1 || length(L1, M1) ;] ->
[N1 M1 ; N1=M1 || length(L1, M1) ; *, Ans=N1] ->
[N1 M1 ; length(L1, M1) ; *, Ans=N1, N1=M1] ->
...

The forth line should be useful to discover that Ans cannot be equal to M1 (the param-322

eter used in the second invocation to length).323

9

4 An assertion language for logic programs324

The declarative flavor of programming with constraints in CCP and CLP allows the325

user to reason about (partial) invariants that must hold during the execution of her pro-326

grams. In this section we give a simple yet powerful language of assertion to state such327

invariants. Then, we give a step further in automatizing the process of debugging.328

Definition 4 (Assertion Language). Assertions are built from the following syntax.329

F ::= pos(c) | neg(c) | cons(c) | icons(c) | F ⊕ F | p(x)[F] | p(x)〈F 〉330

where c is a constraint (c ∈ C), p(·) is a process name and ⊕ ∈ {∧,∨,→}.331

The first four constructs deal with partial assertions about the current store. These332

constructs check, respectively, whether the constraint c: (1) is entailed, (2) is not en-333

tailed, (3) is consistent wrt the current store or (4) leads to an inconsistency when added334

to the current store. Assertions of the form F ⊕ F have the usual meaning. The asser-335

tions p(x)[F] states that all instances of p(t) in the current configuration must satisfy336

the assertion F . The assertions p(x)〈F 〉 is similar to the previous one but it checks for337

the existence of an instance p(t) that satisfies the the assertion F .338

We shall use π to denote a trace (in the collecting semantics). Moreover, π(i)339

denotes the i-th position in the sequence π. Let π(i) = (Xi;Γi;Si). We shall use340

store(π(i)) to denote the constraint ∃Xi.
⊔
Si and procs(π(i)) to denote the sequence341

of processes Γi. The semantics for assertions is formalized next.342

Definition 5 (Semantics). Let π be a sequence of configurations andF be an assertion.343

We inductively define π, i |=F F (read as π satisfies the formula F at position i) as:344

– π, i |=F pos(c) if store(π(i)) |= c.345

– π, i |=F neg(c) if store(π(i)) 6|= c.346

– π, i |=F cons(c) if store(π(i)) t c 6|= f.347

– π, i |=F icons(c) if store(π(i)) t c |= f.348

– π, i |=F F ∧G if π, i |=F F and π, i |=F G.349

– π, i |=F F ∨G if π, i |=F F and π, i |=F G.350

– π, i |=F F → G if π, i |=F F implies π, i |=F G.351

– π, i |=F p(x)[F] if for all p(t) ∈ procs(π(i)), π, i |=F F [t/x].352

– π, i |=F p(x)〈F 〉 if there exists p(t) ∈ procs(π(i)), π, i |=F F [t/x].353

If it is not the case that π, i |=F F , then we say that F does not hold at π(i) and we354

write π(i) 6|=F F .355

The above definition is quite standard and reflects the intuitions given above. More-356

over, let us define ∼ F as ∼ pos(c) = neg(c) (and vice-versa), ∼ cons(c) =357

icons(c) (and vice-versa), ∼ (F ⊕ F) as usual and ∼ p(x)[F (x)] = p(x)〈∼ F (x)〉358

(and vice-versa). Note that, π(i) |=F F iff π(i) 6|=F∼ F .359

Example 2. Consider the current store in π(1) is S = x ∈ 0..10. we then have:360

- π, 1 |=F cons(x = 5), i.e., the current store is consistent wrt the specification x = 5.361

- π, 1 6|=F icons(x = 5), i.e., the store is not inconsistent wrt the specification x = 5.362

10

- π, 1 6|=F pos(x = 5), i.e., the store is not “strong enough” in order to satisfy the363

specification x = 5.364

- π, 1 |=F neg(x = 5), i.e., store is “consistent enough” to guarantee that it is not the365

case that x = 5.366

Note that π, i |=F pos(c) implies π, i |=F cons(c). However, the other direction367

is in general not true (as shown above). We note that CCP and CLP are monotonic in368

the sense that when the store c evolves into d, it must be the case that d |= c (i.e.,369

information is monotonically accumulated). Hence, π, i |= pos(c) implies π, i + j |=370

pos(c). Finally, if the store becomes inconsistent, cons(c) does not hold for any c.371

Temporal [15] and linear [7] variants of CCP remove such restriction on monotonicity.372

We note that checking assertions amounts, roughly, for testing the entailment rela-373

tion in the underlying constraint system. Checking entailments is the basic operation374

CCP agents perform. Hence, from the implementation point of view, the verification of375

assertions does not introduce a significant extra computational cost.376

Example 3 (Conditional assertions). Let us introduce some useful patterns for verifi-377

cation. - Conditional constraints : The assertion pos(c) → F checks for F only if378

c can be deduced from the store. For instance, the assertion pos(c) → neg(d) says379

that d must not be deduced when the store implies c. - Conditional predicates : Let380

G = p(x)〈cons(t)〉. The assertion G → F states that F must be verified whenever381

there is a call/goal of the form p(t) in the context. Moreover, (∼ G) → F verifies F382

when there is no calls of the form p(t) in the context.383

4.1 Dynamic slicing with assertions384

Assertions allows the user to specify conditions that her program must satisfy during385

execution. If this is not the case, the program should stop and start the debugging pro-386

cess. In fact, the assertions may help to give a suitable marking pair (Ssliced, Γsliced)387

for the step S2 of our algorithm as we show in the next definition.388

Definition 6. Let F be an assertion and π be a partial computation such that π, n 6|=F389

F , i.e., π(n) fails to establish the assertion F . Let π(n) = (X;Γ ;S). As testing hy-390

potheses for the symptoms of errors, we define symp(π, F, n) = (Ssl, Γsl) where391

1. If F = pos(c) then Ssl = {d ∈ S | vars(d) ∩ vars(c) 6= ∅}, Γsl = ∅.392

2. If F = neg(c) then Ssl =
⋃
{S′ ⊆ S |

⊔
S′ |= c and S′ is set minimal}, Γsl = ∅393

3. If F = cons(c) then Ssl =
⋃
{S′ ⊆ S |

⊔
S′ t c |= f and S′ is set minimal},394

Γsl = ∅.395

4. If F = icons(c) Ssl = {d ∈ S | vars(d) ∩ vars(c) 6= ∅} and Γsl = ∅.396

5. If F = F1 ∧ F2 then symp(π, F1, n) ∪ symp(π, F2, n).397

6. If F = F1 ∨ F2 then symp(π, F1, n) ∩ symp(π, F2, n).398

7. If F = F1 → F2 then symp(π,∼ F1, n) ∪ symp(π, F2, n).399

8. If F = p(x)[F1] then Ssl = ∅ and Γsl = {p(t) ∈ Γ | π, n 6|=F F1[t/x]}.400

9. If F = p(x)〈F1〉 then Ssl = {d ∈ S | vars(d)∩vars(F1) 6= ∅}, Γsl = {p(t) ∈ Γ}401

11

Let us give some intuitions about the above definition. Consider a (partial) compu-402

tation π of length n where π(n) 6|=F F . In the case (1) above, c must be entailed but403

the current store is not strong enough to do it. A good guess is to start examining the404

processes that added constraints using the same variables as in c. It may be the case405

that such processes should have added more information to entail c as expected in the406

specification F . Similarly for the case (4): c in conjunction with the current store should407

be inconsistent but it is not. Then, more information on the common variables should408

have been added. In the case (2), c should not be entailed but the store indeed entails c.409

In this case, we mark the set of constraints that entails c. The case (3) is similar. In cases410

(5) to (7) we use ∪ and ∩ respectively for point-wise union and intersection in the pair411

(Ssl, Γsl). This cases are self-explanatory (e.g., if F1 ∧ F2 fails, we collect the failure412

symptoms of either F1 or F2). In (8), we mark all the calls that do not satisfy the ex-413

pected assertion F (x). In (9), if F fails, it means that either (a) there are no calls of the414

shape p(t) in the context or (b) none of the calls p(t) satisfy F1. For (a), similar to the415

case (1), a good guess is to examine the processes that added constraints with common416

variables to F1 and see which one should have added more information to entail F1. As417

for (b), we also select all the calls of the form p(t) from the context. The reader may418

compare these definitions with the symptoms we proposed in Step S2 in Section 3.419

Classification of Assertions. As we explained in Section 2.1, computations in CLP420

can succeed or fail and the answers to a goal is the set of constraints obtained from421

successful computations. Hence, according to the kind of assertion, it is important to422

determine when the assertions in Definition 5 must stop or not the computation to start423

the debugging process. For that, we introduce the following classification:424

- post-conditions, post(F) assertions : assertions that are meant to be verified only425

when an answer is found. This kind of assertions are used to test the “quality” of the426

answers wrt the specification. In this case, the slicing process begins only when an427

answer is computed and it does not satisfy one of the assertions. Note that assertions of428

the form p(x)[F (x)] and p(x)〈F (x)〉 are irrelevant as post-conditions since the set of429

goals in an answer must be empty.430

- path invariants, inv(F) assertions: assertions that are meant to hold along the whole431

computation. Then, not satisfying an invariant must be understood as a symptom of an432

error and the computation must stop. We note that due to monotonicity, only assertions433

of the form neg(c) and cons(c) can be used to stop the computation (note that if the434

current configuration fails to satisfy neg(c), then any successor state will also fail to435

satisfy that assertion). Constraints of the form pos(c),icons(c) can be only checked436

when the answer is found since, not satisfying those conditions in the partial computa-437

tion, does not imply that the final state will not satisfy them.438

4.2 Experiments439

We conclude this section with a series of examples showing the use of assertions. Ex-440

amples 4 and 5 deal with CLP programs while Examples 6 and 7 with CCP programs.441

Example 4. The debugger can automatically start and produce the same marking in442

Example 1 with the following (invariant) assertion:443

12

length([A | L],M) :- M = N, length(L, N), inv(pos(M>0)).

Example 5. Consider the following CLP program (written in GNU-Prolog with integer444

finite domains) for solving the well known problem of posing N queens on a N × N445

chessboard in such a way that they do not attach to each other.446

queens(N, Queens) :- length(Queens, N), fd_domain(Queens,1,N),
constrain(Queens), fd_labeling(Queens,[]).

constrain(Queens) :-fd_all_different(Queens), diagonal(Queens).
diagonal([]).
diagonal([Q|Queens]):-secure(Q, 1, Queens), diagonal(Queens).
secure(_,_,[]).
secure(X,D,[Q|Queens]) :- doesnotattack(X,Q,D),D1 is D+1, secure(X,D1,Queens).
doesnotattack(X,Y,D) :- X + D #\= Y,Y + X #\= D.

The program contains one mistake, which causes the introduction of a few additional447

and not correct solutions, e.g., [1,5,4,3,2] for the goal queens(5,X). The user448

now has two possible strategies: either she lets the interpreter to compute the solutions,449

one by one and then, when she sees a wrong solution she uses the slicer for marking450

manually the final store to get the sliced computation; or she can define an assertion to451

be verified. For instance, she can introduce the following a post-condition assertion:452

secure(X,D,[Q|Queens]) :- doesnotattack(X,Q,D),D1 is D+1, secure(X,D1,Queens),
post(cons(Q #\= X+1)).

Now the slicer stops as soon as the constraint X #\= Q+1 becomes inconsistent453

with the store in a successful computation (e.g., the assertion fails on the –partial–454

assignment “5,4”) and an automatic slicing of the successful computation is performed.455

Example 6. In [8] we presented a compelling example of slicing for a timed CCP pro-456

gram modeling the synchronization of events in musical rhythmic patterns. As shown457

in Example 2 at http://subsell.logic.at/slicer/, the slicer for CCP was458

able to sufficiently abstract away from irrelevant processes and constraints to highlight459

the problem in a faulty program. However, the process of stopping the computation to460

start the debugging was left to the user. The property that failed in the program can be461

naturally expresses as an assertion. Namely, in the whole computation, if the constraint462

beat is present (representing a sound in the musical rhythm), the constraint stop463

cannot be present (representing the end of the rhythm). This can be written as the con-464

ditional assertion pos(beat) → neg(stop). Following Definition 6, the constraints465

marked in the wrong computation are the same we considered in [8], thus automatizing466

completely the process of identifying the wrong computation.467

Example 7. Example 3 in the URL above illustrates the use of timed CCP for the spec-468

ification of biochemical systems (we invite the reader to compare in the website the469

sliced and non-sliced traces). Roughly, in that model, constraints of the form Mdm2470

(resp. Mdm2A) state that the protein Mdm2 is present (resp. absence). The model in-471

cludes activation (and inhibition) biological rules modeled as processes (omitting some472

details) of the form ask (Mdm2A) then next tell(Mdm2) modeling that “if Mdm2473

is absent now, then it must be present in the next time-unit”. The interaction of many474

of these rules makes trickier the model since rules may “compete” for resources and475

then, we can wrongly observe at the same time-unit that Mdm2 is both present and476

13

absence. An assertion of the form (pos(Mdm2A) → neg(Mdm2)) ∧ (pos(Mdm2) →477

neg(Mdm2A)) will automatically stop the computation and produce the same marking478

we used to depurate the program in the website.479

5 Related work and conclusions480

Related work Assertions for automatizing a slicing process have been previously in-481

troduced in [3] for the functional logic language Maude. The language they consider as482

well as the type of assertions are completely different from ours. They do not have con-483

straints, and deal with functional and equational computations. Another previous work484

[22] introduced static and dynamic slicing for CLP programs. However, [22] essentially485

aims to identify the parts of a goal which do not share variables, so that to slice them486

apart. Our approach consider more situations, not only variable dependencies, but also487

other kinds of error symptoms. Moreover we have assertions, and hence an automatic488

slicing mechanism not considered in [22]. The well known debugging box model of489

Prolog [23] introduces a tool for observing the evolution of atoms during their reduc-490

tion in the search tree. We believe that our methodology might be integrated with the491

box model and may extend some of its features. For instance, the box model makes ba-492

sic simplifications by asking the user to specify which predicates she wants to observe.493

In our case one entire computational path is simplified automatically by considering the494

marked information and identifying the constraints and the atoms which are relevant495

for such information.496

Conclusions and future work In this paper we have first extended a previous frame-497

work for dynamic slicing of (timed) CCP programs to the case of CLP programs. We498

considered a slightly different marking mechanism, extended to atoms besides con-499

straints. Don’t know non-determinism in CLP requires a different identification of the500

computations of interest for debugging wrt CCP. We consider different modalities spec-501

ified by the user for selecting successful computations rather than all possible partial502

computations. As another contribution of this paper, in order to automatize the slicing503

process, we have introduced an assertion language. This language is rather flexible and504

allows to specify different types of assertions which then implies them to be applied505

to successful computations or to all possible partial computations. There are several506

different possible properties which can be specified, such as consistency with a given507

constraint of the constraint store, the fact that a constraint should be satisfied or not508

satisfied by the constraint store, a pattern to select the states on which to apply the509

assertions, etc. The user can specify assertions which are checked automatically and510

when assertions are not satisfied by a state of a selected computation then an auto-511

matic slicing of such computation can start. We implemented a prototype of the slicer512

in Maude and showed its use in debugging several programs including a specification of513

a biochemical system in CCP and a classical search problem in CLP. We are currently514

extending the tool to deal with CLP don’t know non-determinism. We plan to add more515

advanced graphical tools to our prototype, as well as to study the integration of our516

framework with other debugging techniques, such as the box model and declarative or517

approximated debuggers. We also want to investigate the relation of our technique with518

14

dynamic testing (e.g. concolic techniques) and extend the assertion language with tem-519

poral operators, e.g. the past operator (�), to better deal with temporal CCP and for520

expressing the relation between two consecutive temporal units.521

References522

1. M. Alpuente, D. Ballis, J. Espert, and D. Romero. Backward trace slicing for rewriting logic523

theories. In Proc. of CADE’11, pages 34–48, Berlin, Heidelberg, 2011. Springer-Verlag.524

2. M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Using conditional trace slicing for525

improving maude programs. Sci. Comput. Program., 80:385–415, 2014.526

3. M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Debugging maude programs via runtime527

assertion checking and trace slicing. J. Log. Algebr. Meth. Program., 85:707–736, 2016.528

4. M. Codish, M. Falaschi, and K. Marriott. Suspension Analyses for Concurrent Logic Pro-529

grams. ACM Transactions on Programming Languages and Systems, 16(3):649–686, 1994.530

5. M. Comini, L. Titolo, and A. Villanueva. Abstract Diagnosis for Timed Concurrent Con-531

straint programs. Theory and Practice of Logic Programming, 11(4-5):487–502, 2011.532

6. F. S. de Boer, A. Di Pierro, and C. Palamidessi. Nondeterminism and infinite computations533

in constraint programming. Theoretical Computer Science, 151(1):37–78, 1995.534

7. F. Fages, P. Ruet, and S. Soliman. Linear concurrent constraint programming: Operational535

and phase semantics. Inf. Comput., 165(1):14–41, 2001.536

8. M. Falaschi, M. Gabbrielli, C. Olarte, and C. Palamidessi. Slicing concurrent constraint537

programs. In M. Hermenegildo and P. López-Garcı́a, editors, Proc.of LOPSTR 2016, volume538

10184 of Lecture Notes in Computer Science, pages 76–93. Springer, 2016.539

9. M. Falaschi, C. Olarte, and C. Palamidessi. Abstract interpretation of temporal concurrent540

constraint programs. TPLP, 15(3):312–357, 2015.541

10. P. Van Hentenryck, V. A. Saraswat, and Y. Deville. Design, implementation, and evaluation542

of the constraint language cc(fd). Journal of Logic Programming, 37(1-3):139–164, 1998.543

11. J. Jaffar and M. Maher. Constraint logic programming: a survey. The Journal of Logic544

Programming, 19-20(Supplement 1):503–581, 1994.545

12. S. Josep. A vocabulary of program slicing-based techniques. ACM Comput. Surv.,546

44(3):12:1–12:41, June 2012.547

13. B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–163, 1988.548

14. J. Jaff.ichael J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint logic549

programs. J. Log. Program., 37(1-3):1–46, 1998.550

15. M. Nielsen, C. Palamidessi, and F. D. Valencia. Temporal concurrent constraint program-551

ming: Denotation, logic and applications. Nord. J. Comput., 9(1):145–188, 2002.552

16. C. Ochoa, J. Silva, and G. Vidal. Dynamic slicing of lazy functional programs based on553

redex trails. Higher Order Symbol. Comput., 21(1-2):147–192, June 2008.554

17. C. Olarte, C. Rueda, and F. D. Valencia. Models and emerging trends of concurrent constraint555

programming. Constraints, 18(4):535–578, 2013.556

18. V. A. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent constraint program-557

ming. J. Symb. Comput., 22(5/6):475–520, 1996.558

19. V. A. Saraswat, M. C. Rinard, and P. Panangaden. Semantic foundations of concurrent con-559

straint programming. In D. S. Wise, editor, POPL, pages 333–352. ACM Press, 1991.560

20. E. Shapiro. The family of concurrent logic programming languages. ACM Comput. Surv.,561

21(3):413–510, 1989.562

21. E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, 1983.563

22. G. Szilágyi, T. Gyimóthy, and J. Maluszyński. Static and dynamic slicing of constraint logic564

programs. Automated Software Engg., 9(1):41–65, 2002.565

23. C. S. Mellish W. F. Clocksin. Programming in Prolog. Springer Verlag, 1981.566

24. M. Weiser. Program slicing. IEEE Trans. on Software Engineering, 10(4):352–357, 1984.567

15

A Proof of Adequacy568

Theorem 1 (Adequacy) Let C by a constraint system,H be a set of clauses and G be a569

goal. Then, G ⇓c iff [[G]] ⇓c.570

Proof. (⇒) The proof proceeds by induction on the derivation −→CLP . Assume that571

(G; c) −→CLP (G′; c′). If such reduction corresponds to adding a constraint c (cases572

(1) and (2) in Definition 2), then it is easy to see that the process [[G]] can also execute the573

corresponding tell(c) process and the result holds. Reductions of constraints represent-574

ing equality on terms ((3) in Definition 2) are matched by introducing the corresponding575

constraint in D (Definition 3). Finally, if the reduction (G; c) −→CLP (G′; c′) is due576

to the application of (3) in Definition 2, clearly we can apply the rules RCALL and then577

RASK to obtain the needed result. The (⇐) follows from similar arguments.578

Marking algorithms579

1 Function sliceProcess(γ, ψ, i, k, θ, S)
2 let γ = (Xγ ;Γ, P : i, Γ ′;Sγ) and ψ = (Xψ;Γ, ΓQ, Γ

′;Sψ) in
3 match P with
4 case tell(c) do
5 let c′ = sliceConstraints(Xγ , Xψ, Sγ , Sψ, S) in
6 if c′ = • or c′ = ∃x.• then return 〈[•/i], t〉 else return 〈[tell(c′)/i], t〉;
7 case

∑
ask (cl) thenQl do

8 if ΓQθ = • then return 〈[•/i], t〉 else return 〈[ask (ck) then (ΓQθ) + • / i], ck〉;
9 case (local x)Q do

10 let {x′} = Xψ \Xγ in
11 if ΓQ[x′/x]θ = • then return 〈[•/i], t〉 else return 〈[(local x′)ΓQ[x′/x]θ/i], t〉;
12 case p(y) do
13 if ΓQθ = • then return 〈[•/i], t〉 else return 〈∅, t〉;
14 end
15 end
16 Function sliceConstraints(Xγ , Xψ, Sγ , Sψ, S)
17 let Sc = Sψ \ Sγ and θ = ∅ in
18 foreach ca ∈ Sc \ S do θ ← θ ◦ [•/ca] ;
19 return ∃Xψ\Xγ .

⊔
Scθ

20 end
Algorithm 2: Slicing Processes and Constraints

Algorithm 2, from [8], reported above, shows the procedures to mark processes580

and constraints during the backward slicing computation. The correctness of such algo-581

rithms can be stated as follows. The slicing procedure computes a suitable approxima-582

tion of the concrete trace. Given two processes P, P ′, we say that P ′ approximates P ,583

notation P �] P ′, if there exists a (possibly empty) replacement θ s.t. P ′ = Pθ (i.e., P ′584

is as P but replacing some subterms with •). Let γ = (X;Γ ;S) and γ′ = (X ′;Γ ′;S′)585

be two configurations s.t. |Γ | = |Γ ′|. We say that γ′ approximates γ, notation γ �] γ′,586

if X ′ ⊆ X , S′ ⊆ S and Pi �] P ′i for all i ∈ 1..|Γ |.587

Theorem 2. (see [8]) Let γ0
[i1]k1−−−→ · · ·

[in]kn−−−−→ γn be a partial computation and588

γ′0
[i1]k1−−−→ · · ·

[in]kn−−−−→ γ′n be the resulting sliced trace according to an arbitrary slic-589

ing criterion. Then, for all t ∈ 1..n, γt �] γ′t. Moreover, let Q =
∑

ask (ck) then Pk590

16

and assume that (Xt−1;Γ,Q : it, Γ
′;St−1)

[it]kt−−−→ (Xt;Γ, Pkt : j, Γ
′;St) for some591

t ∈ 1..n. Then, ∃X ′t−1(
⊔
S′t−1) |= ckt .592

17

