
Proof Search in Nested Sequent Calculi

Björn Lellmann1? and Elaine Pimentel2??

1 Department of Computer Languages, TU Wien, Austria
2 Department of Mathematics, UFRN, Brazil

Abstract. We propose a notion of focusing for nested sequent calculi for modal
logics which brings down the complexity of proof search to that of the correspond-
ing sequent calculi. The resulting systems are amenable to specifications in linear
logic. Examples include modal logic K, a simply dependent bimodal logic and
the standard non-normal modal logics. As byproduct we obtain the first nested
sequent calculi for the considered non-normal modal logics.

1 Introduction

A main concern in proof theory for modal logics is the development of philosophically
and, at the same time, computationally satisfying frameworks to capture large classes of
logics in a uniform and systematic way. Unfortunately the standard sequent framework
satisfies these desiderata only partly. Undoubtedly, there are sequent calculi for a number
of modal logics exhibiting many good properties (such as analyticity), which can be used
in complexity-optimal decision procedures. However, their construction often seems
ad-hoc, they are usually not modular, and they mostly lack philosophically relevant
properties such as separate left and right introduction rules for the modalities. These
problems are often connected to the fact that the modal rules in such calculi usually
introduce more than one connective at a time. For example, in the rule

Γ ` A
Γ′,�Γ ` �A, ∆ k

for modal logic K [3], the context Γ could contain an arbitrary finite number of formulae.
Hence this rule can also be seen as an infinite set of rules{ B1, . . . , Bn ` A

Γ′,�B1, . . . ,�Bn ` �A, ∆
kn | n ≥ 0

}
each with a fixed number of principal formulae. Both of these perspectives are somewhat
dissatisfying: the first since it necessitates modifying the context, and the second since it
explicitly discards the distinction between left and right rules for the modal connective.

One way to approach this problem is to consider extensions of the sequent framework
that are expressive enough for capturing these modalities using separate left and right
introduction rules. This is possible e.g. in the frameworks of labelled sequents [11]

? Funded by the EU under Marie Skłodowska-Curie grant agreement No. 660047
?? Funded by CNPq



2 Björn Lellmann and Elaine Pimentel

or in that of nested sequents or tree-hypersequents [2,14,15]. Intuitively, in the latter
framework a single sequent is replaced with a tree of sequents, where successors of a
sequent are interpreted under a modality. The modal rules of these calculi govern the
transfer of (modal) formulae between the different sequents, and it can be shown that it is
sufficient to transfer only one formula at a time. However, the price to pay for this added
expressivity is that the obvious proof search procedure is of suboptimal complexity since
it constructs potentially exponentially large nested sequents [2].

In this work, we reconcile the added superior expressiveness and modularity of
nested sequents with the computational behaviour of the standard sequent framework by
proposing a focusing discipline for linear nested sequents [7], a restricted form of nested
sequents where the tree-structure is restricted to that of a line. The result is a notion of
normal derivations in the linear nested setting, which directly correspond to derivations
in the standard sequent setting. Moreover, the resulting calculi lend themselves to
specification and implementation in linear logic following the approach in [10]. Since
we are interested in the connections to the standard sequent framework, we concentrate
on logics which have a standard sequent calculus, with examples including normal
modal logic K and simple extensions, the exemplary simply dependent bimodal logic
KT ⊕⊆ S4 [4], but also several non-normal modal logics, i.e., standard extensions of
classical modal logic [3]. As a side effect, we obtain to the best of our knowledge the
first nested sequent calculi for all the considered non-normal modal logics.

2 Linear nested sequent systems

We briefly recall the basic notions of the linear nested sequent framework [7], essentially
a reformulation of Masini’s 2-sequents [9] in the nested sequent framework. In the
following we consider a sequent to be a pair Γ ` ∆ of multisets and adopt the standard
conventions and notations (see e.g. [11]). In the linear nested sequent framework, the tree
structure of nested sequents is restricted to a line, i.e., a linear nested sequent is simply
a finite list of sequents. This data structure matches exactly the history in a backwards
proof search in an ordinary sequent calculus, a fact we will heavily use in what follows.

Definition 1. The set LNS of linear nested sequents is given recursively by:

1. if Γ ` ∆ is a sequent then Γ ` ∆ ∈ LNS
2. if Γ ` ∆ is a sequent and G ∈ LNS then Γ ` ∆//G ∈ LNS.

We will write S{Γ ` ∆} for denoting a context G//Γ ` ∆//H where G,H ∈ LNS or
G,H = ∅. We call each sequent in a linear nested sequent a component and slightly
abuse notation and abbreviate “linear nested sequent” to LNS.

In this work we consider only modal logics based on classical propositional logic, and
we take the system LNSG (Fig. 1) as our base calculus. Note that the initial sequents are
atomic, contraction, weakening and cut are admissible and all rules are invertible.

Fig. 2 presents the modal rules for the linear nested sequent calculus LNSK for
K, essentially a linear version of the standard nested sequent calculus from [2,14].
Conceptually, the main point is that the sequent rule k is split into the two rules �L and �R,
which permit to simulate the sequent rule treating one formula at a time. Completeness of



Proof Search in Nested Sequent Calculi 3

S{Γ, p ` p, ∆} init
S{Γ, A, B ` ∆}
S{Γ, A ∧ B ` ∆}

∧L
S{Γ ` A, ∆} S{Γ ` B, ∆}

S{Γ ` A ∧ B, ∆}
∧R

S{Γ,⊥ ` ∆}
⊥L

S{Γ, B ` ∆} S{Γ ` A, ∆}
S{Γ, A ⊃ B ` ∆}

⊃L
S{Γ, A ` B, ∆}
S{Γ ` A ⊃ B, ∆}

⊃R

Fig. 1. System LNSG for classical propositional logic. In the init rule, p is atomic.

S{Γ ` ∆// Σ, A ` Π}
S{Γ,�A ` ∆// Σ ` Π}

�L
G// Γ ` ∆// ` A
G// Γ ` ∆,�A

�R

Fig. 2. The modal rules of the linear nested sequent calculus LNSK for K.

LNSK w.r.t. modal logic K is shown by simulating a sequent derivation bottom-up in the
last two components of the linear nested sequents, marking applications of transitional
rules by the nesting//and simulating the k-rule by a block of �L and �R rules [7]. E.g.,
an application of k on a branch with history captured by the LNS G is simulated by:

Γ ` A
Γ′,�Γ ` �A, ∆ k.... G

 
G//Γ′ ` ∆//Γ ` A
G//Γ′,�Γ ` ∆// ` A

�L

G//Γ′,�Γ ` �A, ∆
�R

where the double line indicates multiple rule applications. Observe that this method relies
on the view of linear nested sequents as histories in proof search. It also simulates the
propositional sequent rules in the rightmost component of the linear nested sequents. This
gives a different way of looking at system K, where formulas in the context can be handled
separately. However, the modal rules do not need to occur in a block corresponding
to one application of the sequent rule anymore. For instance, one way of deriving the
instance �(p ⊃ q) ⊃ (�p ⊃ �q) of the normality axiom for modal logic K is as follows.

�p ` //q ` q init
` //p ` p, q init

�p ` // ` p, q
�L

�p ` //p ⊃ q ` q
⊃L

�(p ⊃ q),�p ` �q
�R,�L

` �(p ⊃ q) ⊃ (�p ⊃ �q)
⊃R

Note that the propositional rule ⊃L is applied between two modal rules. Hence there
are many derivations in LNSK which are not the result of simulating a derivation of
the sequent calculus for K. Thus, while the linear nested sequent calculus LNSK has
conceptual advantages over the standard sequent calculus for K, its behaviour in terms of
proof search is worse: there are many more possible derivations with the same conclusion,
when compared to the sequent calculus. We will address this issue by proposing a
focusing discipline [1] to restrict proof search to a smaller class of derivations, while
retaining the conceptual advantages of the framework.



4 Björn Lellmann and Elaine Pimentel

R, X, x : p ` x : p,Y init
R, X, x : A, x : B ` Y
R, X, x : A ∧ B ` Y

∧L
R, X ` x : A,Y R, X ` x : B,Y

R, X ` x : A ∧ B,Y
∧R

R, X, x : ⊥ ` Y
⊥L

R, X ` Y, x : A R, X, x : B ` Y
R, X, x : A ⊃ B ` Y

⊃L
R, X, x : A ` Y, x : B
R, X ` Y, x : A ⊃ B

⊃R

Fig. 3. Labelled line sequent calculus LLSG.

3 Labelled line sequent systems

For simplifying the notation of the focused systems and also for encoding linear nested
sequent calculi in linear logic (see Section 6), we follow the correspondence between
nested sequents and labelled tree sequents given in [5], and consider the labelled se-
quents [11] corresponding to linear nested sequents. Intuitively, the components of a
LNS are labelled with variables and their order is encoded in a relation.

More formally, a (possibly empty) set of relations terms (i.e. terms of the form xRy)
is called a relation set. For a relation set R, the frame Fr(R) defined by R is given by
(|R|,R) where |R| = {x | xRv ∈ R or vRx ∈ R for some state v}. We say that a relation set
R is treelike if the frame defined by R is a tree or R is empty. A treelike relation set R is
called linelike if each node in R has at most one child.

Definition 2. A labelled line sequent LLS is a labelled sequent R, X ` Y where

1. R is linelike;
2. if R = ∅ then X has the form x : A1, . . . , x : An and Y has the form x : B1, . . . , x : Bm

for some state variable x;
3. if R , ∅ then every state variable x that occurs in either X or Y also occurs in R.

Observe that, in LLS, if xRy ∈ R then uRy < R and xRv < R for any u , x and v , y.

Definition 3. A labelled line sequent calculus is a labelled sequent calculus whose
initial sequents and inference rules are constructed from LLS.

In Fig. 3 we present the rules for the labelled line classical calculus LLSG.
Since linear nested sequents form a particular case of nested sequents, the algorithm

given in [5] can be used for generating LLS from LNS, and vice versa. However, one
has to keep the linearity property invariant through inference rules. For example, the rule

R, xRy, X ` Y, y : A
R, X, ` Y, x : �A

�′R

where y is fresh, considered more generally as a labelled sequent rule is not adequate
w.r.t. the system LNSK, since there may exist z ∈ |R| such that xRz ∈ R. That is, for
labelled sequents in general, freshness alone is not enough for guaranteeing unicity of
x in R. And it does not seem to be trivial to assure this unicity by using logical rules
without side conditions. To avoid this problem, we slightly modify the framework by
restricting R to singletons, that is, R = {xRy} will record only the two last components, in



Proof Search in Nested Sequent Calculi 5

zRx, X, x : p ` x : p,Y init
zRx, X, x : A, x : B ` Y
zRx, X, x : A ∧ B ` Y

∧L
zRx, X ` x : A,Y zRx, X ` x : B,Y

zRx, X ` x : A ∧ B,Y
∧R

zRx, X, x : ⊥ ` Y
⊥L

zRx, X ` Y, x : A zRx, X, x : B ` Y
zRx, X, x : A ⊃ B ` Y

⊃L
zRx, X, x : A ` Y, x : B
zRx, X ` Y, x : A ⊃ B

⊃R

Fig. 4. The end-active version of LLSG. In rule init, p is atomic.

this case labelled by x and y, and by adding a base case R = {y0Rx0} for x0, y0 different
state variables when there are no nested components. The rule for introducing �R then is

xRy, X ` Y, y : A
zRx, X, ` Y, x : �A

�R

with y fresh. Note that this solution corresponds to recording the history of the proof
search up to the last two steps. We adopt the following terminology for calculi where
this restriction is possible.

Definition 4. A LNS calculus is end-active if in all its rules the rightmost components
of the premisses are active and the only active components (in premisses and conclusion)
are the two rightmost ones. An end-active LLS is a singleton relation set R together
with a sequent X ` Y of labelled formulae, written R, X ` Y. The rules of an end-active
LLS calculus are constructed from end-active labelled line sequents such that the active
formulae in a premiss xRy, X ` Y are labelled with y and the labels of all active formulae
in the conclusion are in its relation set.

Observe that the completeness proof for LNSK via simulating a sequent derivation in
the last component actually shows that the end-active version of the calculus LNSK is
complete for K [7]. From now on, we will use the end-active version of the propositional
rules (see Fig. 4). Note that, in an end-active LLS, state variables might occur in the
sequent and not in the relation set. Such formulae will remain inactive towards the leaves
of the derivation. In fact, a key property of end-active LNS calculi is that rules can only
move formulas “forward”, that is, either an active formula produces other formulae in
the same component or in the next one. Hence one can automatically generate LLS from
LNS. In the following we write x : Γ if the label of every labelled formula in Γ is x.

Definition 5. For a state variable x, define the mapping TLx from LNS to end-active
LLS as follows

TLx0 (Γ0 ` ∆0) = y0Rx0, x0 : Γ0 ` x0 : ∆0
TLxn (Γ0 ` ∆0// . . .//Γn ` ∆n) = xn−1Rxn, x0 : Γ0, . . . , xn : Γn ` x0 : ∆0, . . . , xn : ∆n n > 0

with all state variables pairwise distinct.

It is straightforward to use TLx in order to construct a LLS inference rule from an
inference rule of an end-active LNS calculus. The procedure, that can be automatised, is
the same as the one presented in [5], as we shall illustrate it here.



6 Björn Lellmann and Elaine Pimentel

xRy, X, y : A ` Y
xRy, X, x : �A ` Y

�L
xRy, X ` Y, y : A

zRx, X ` Y, x : �A
�R (y is a fresh variable)

Fig. 5. The modal rules of LLSK.

Example 6. Consider the following application of the rule �R of Fig. 2:

Γ0 ` ∆0// . . .//Γn−1 ` ∆n−1//Γn ` ∆n// ` A
Γ0 ` ∆0// . . .//Γn−1 ` ∆n−1//Γn ` ∆n,�A

�R

Applying TLx to the conclusion we obtain xn−1Rxn, X ` Y, xn : �A, where X = x1 :
Γ1, . . . , xn : Γn and Y = x1 : ∆1, . . . , xn : ∆n. Applying TLx to the premise we obtain
xnRxn+1, X ` Y, xn+1 : A. We thus obtain an application of the LLS rule

xnRxn+1, X ` Y, xn+1 : A
xn−1Rxn, X ` Y, xn : �A

TLx(�R)

which is the rule �R presented in Fig. 5.

The following result follows readily by transforming derivations bottom-up.

Theorem 7. Γ ` ∆ is provable in a certain end-active LNS calculus if and only if
TLx0 (Γ ` ∆) is provable in the corresponding end-active LLS calculus. ut

The end-active labelled line sequent calculus LLSK for K is given in Fig. 5. The
following is immediate from completeness of the end-active version of LNSK.

Corollary 8. A sequent Γ ` ∆ has a proof in LNSK if and only if yRx, x : Γ ` x : ∆ has
a proof in LLSK for some different state variables x, y. ut

4 Focused labelled line sequent systems

Although adding labels and restricting systems to their end-active form enhance proof
search a little, this is still not enough for guaranteeing that modal rules occur in a block.

In [1], Andreoli introduced a notion of normal form for cut-free proofs in linear logic.
This normal form is given by a focused proof system organised around two “phases”
of proof construction: the negative phase for invertible inference rules and the positive
phase for non-necessarily-invertible inference rules. Observe that a similar organisation
is adopted when moving from LNSK to LLSK: invertible rules are done eagerly while the
non invertible ones (�R + �L) are done only in the last two components.

We will now define FLLSK, a focused system for LLSK. Depending on the focusing,
the sequents manipulated in FLLSK have one of the following three shapes:

1. zRx : Γ; X ⇒ Y;∆ is an unfocused sequent, where Γ contains only modal formulae
and ∆ contains only modal or atomic formulae.

2. zR[x] : Γ; X → ·;∆ is a sequent focused on a boxed or atomic formula.
3. [x]Ry : Γ; X → Y;∆ is a sequent focused on a boxed formula.



Proof Search in Nested Sequent Calculi 7

zRx : Γ; X, x : ⊥ ⇒ Y;∆
⊥L

zRx : Γ; X, x : A, x : B⇒ Y;∆
zRx : Γ; X, x : A ∧ B⇒ Y;∆

∧L

zRx : Γ; X ⇒ x : A,Y;∆ zRx : Γ; X ⇒ x : B,Y;∆
zRx : Γ; X ⇒ x : A ∧ B,Y;∆

∧R

zRx : Γ, x : Bb; X ⇒ Y;∆
zRx : Γ; X, x : Bb ⇒ Y;∆

storeL
zRx : Γ; X ⇒ Y;∆, x : Ab

zRx : Γ; X ⇒ Y, x : Ab;∆
storeR

zR[x] : Γ; X, x : A→ ·;∆, x : A init
zR[x] : Γ; X → ·;∆
zRx : Γ; X ⇒ ·;∆ D

xRy : ·; X ⇒ Y;∆
[x]Ry : ·; X → Y;∆ R

[x]Ry : Γ; X → y : A;∆
zR[x] : Γ; X → ·;∆, x : �A

�R
[x]Ry : Γ; X, y : A→ Y;∆

[x]Ry : Γ, x : �A; X → Y;∆
�L

Fig. 6. Some rules of the focused labelled line sequent calculus FLLSK for K. Ab is atomic or a
boxed formula, Bb is a boxed formula.

In the negative phase, sequents have the shape (1) above and all invertible propositional
or modal rules are applied eagerly on formulae labelled with the variable x until there
are only atomic or boxed formulae left. Some of those are moved to special contexts Γ, ∆
using store rules. These contexts store the formulae that can be chosen for focusing.
When this process terminates, the positive phase starts by deciding on one of the formulae
in ∆, indicated by a sequent of the form (2). If this formula is an atom, then the proof
should terminate. Otherwise, the focusing is over a modal formula, and the rule �R

creates a fresh label y and moves the unboxed part of the formula to this new label,
resulting in a sequent of the form (3). The positive phase then continues by possibly
moving boxed formulae in Γ, labelled with x, to the label y. Finally, focusing is lost and
we come back to the negative phase, now inside the component labelled by y.

The rules for FLLSK are presented in Figure 6. Note that the rule storeR systemati-
cally moves all atomic and boxed formulae from Y to ∆, and hence Y will be eventually
empty. This is the trigger for switching from the negative to the positive phase. Note also
that the contexts may carry some “garbage”, i.e., formulae which will never be principal.
In fact, since the calculus is end-active, only formulae in one of the two last components
can be principal. Similar to standard systems where weakening is admissible, these
formulae are then absorbed by the initial sequents init. Since the focusing procedure
described above is just a systematic organisation of proofs, soundness and completeness
proofs are often straightforward permutation-of-rules arguments.

Theorem 9. The system FLLSK is sound and complete w.r.t. modal logic K, i.e., a
formula A is a theorem of K iff the sequent zRx : ·; · ⇒ x : A; · is derivable in FLLSK.

Proof. Observe that propositional rules permute up over the �L rule. Hence all the
applications of �L can be done in sequence, just after the �R rule. ut

Example 10. The normality axiom is derived as shown in Fig. 7. Note that the modal
rules occur in a block corresponding to an application of the sequent rule k. That is,
focusing effectively blocks derivations where propositional rules are applied between
modal ones.



8 Björn Lellmann and Elaine Pimentel

xR[y] : ·; y : q, y : p→ ·; y : q init

xRy : ·; y : q, y : p⇒ y : q; ·
storeR,D

xR[y] : ·; y : p→ y : q; y : p init

xRy : ·; y : p⇒ y : p, y : q; ·
storeR,D

xRy : ·; y : p ⊃ q, y : p⇒ y : q; ·
⊃L

[x]Ry : ·; y : p ⊃ q, y : p→ y : q; · R

[x]Ry : x : �(p ⊃ q), x : �p; · → y : q; ·
�L

zR[x] : x : �(p ⊃ q), x : �p; · → ·; x : �q
�R

zRx : x : �(p ⊃ q), x : �p; · ⇒ ·; x : �q D

zRx : ·; x : �(p ⊃ q), x : �p⇒ x : �q; ·
storeL, storeR

zRx : ·; · ⇒ x : �(p ⊃ q) ⊃ (�p ⊃ �q); ·
⊃R

Fig. 7. The derivation of the normality axiom in FLLSK

♥A→ �A k� �(A→ B)→ (�A→ �B) t� �A→ A ` A
` �A

nec�

k♥ ♥(A→ B)→ (♥A→ ♥B) t♥ ♥A→ A 4♥ ♥A→ ♥♥A ` A
` ♥A

nec♥

Fig. 8. The modal axioms for logic KT ⊕⊆ S4.

5 Some more involved examples

It is straightforward to see that the method described above apply to any sequent calculus
which can be written as an end-variant linear nested sequent calculus, in particular
to extensions of K with combinations of the axioms D,T, 4 or to the multi-succedent
calculus for intuitionistic logic [7]. We now consider some less trivial examples.

5.1 Simply dependent bimodal logics

As a first example, we consider a bimodal logic with a simple interaction between the
modalities. While we only treat one example, our method is readily adapted to other such
logics. The language of simply dependent bimodal logic KT⊕⊆ S4 from [4] contains two
modalities � and ♥, and the axioms are the KT axioms for � together with the S4 axioms
for ♥ and the interaction axiom ♥A → �A (Fig. 8). Using the methods in [8], these
axioms are easily converted into the sequent system GKT⊕⊆S4 extending the standard
propositional rules with the modal rules of Fig. 9. It is straightforward to check that these
rules satisfy the criteria for cut elimination from [8], and hence GKT⊕⊆S4 is cut-free.

To obtain a focused system, we again convert the sequent calculus into a LNS
calculus. However, since now we have two different non-invertible right rules (�R and
♥R), we need to modify the linear nested setting slightly, introducing the two different
nesting operators//� and//♥ for the rules �R resp. ♥R. The intended interpretation is

ι(Γ ` ∆) :=
∧

Γ →
∨

∆

ι(Γ ` ∆//�H) :=
∧

Γ →
∨

∆ ∨ �ι(H)

ι(Γ ` ∆//♥H) :=
∧

Γ →
∨

∆ ∨ ♥ι(H)



Proof Search in Nested Sequent Calculi 9

Γ,♥Σ, Σ,�Θ,Θ ` ∆

Γ,♥Σ,�Θ ` ∆
T

♥Γ,♥Σ, Σ, Θ ` A
Ω,♥Γ,♥Σ,�Θ ` �A, Ξ

�R
♥Γ ` A

Ω,♥Γ ` ♥A, Ξ
♥R

Fig. 9. The modal rules of the sequent calculus GKT⊕⊆S4 for KT ⊕⊆ S4

G//∗Γ ` ∆//� ` A
G//∗Γ ` ∆,�A

�R�
S{Γ ` ∆//�Σ, A ` Π}
S{Γ,�A ` ∆//�Σ ` Π}

�L
S{Γ ` ∆//�Σ,♥A ` Π}
S{Γ,♥A ` ∆//�Σ ` Π}

♥L�

G//∗Γ ` ∆//♥ ` A
G//∗Γ ` ∆,♥A

♥R♥
S
{
Γ ` ∆//♥Σ,♥A ` Π

}
S
{
Γ,♥A ` ∆//♥Σ ` Π

} ♥L♥
S{Γ,�A, A ` ∆}
S{Γ,�A ` ∆}

t�
S{Γ,♥A, A ` ∆}
S{Γ,♥A ` ∆}

t♥

Fig. 10. The modal linear nested sequent rules for KT ⊕⊆ S4. Here ∗ ∈ {�,♥}.

The modal sequent rules are then converted into the rules of Fig. 10. The propositional
rules are those of LNSG (Fig. 1). Cut-free completeness of (the end-active variant of)
this calculus again follows from simulating sequent derivations in the rightmost two
components.

Lemma 11 (Soundness). The rules of LNSKT⊕⊆S4 preserve validity of the formula inter-
pretation of the sequents with respect to KT ⊕⊆ S4 frames.

Proof. By showing that if the negation of the interpretation of the conclusion of a rule is
satisfiable in a KT ⊕⊆ S4 frame, then so is its conclusion, using that in such frames the
accessibility relation R� for � is contained in the accessibility relation R♥ for ♥. ut

Note that this also shows that the obvious adaption of this calculus to the full nested
sequent setting is sound and cut-free complete for KT ⊕⊆ S4. For proposing a focused
version for the linear nested sequent rules we essentially follow the method given in
Section 4, adapting the framework slightly to the multimodal setting by introducing
two different kinds of relation terms xR�y and xR♥y corresponding to the accessibility
relations of the modalities � and ♥ respectively. The frame Fr(R) is defined as (|R� ∪
R♥|,R� ∪ R♥) and linelike relation sets are defined using this definition. The FLLS rules
then are defined straightforwardly (Fig. 11). Soundness and completeness of the resulting
system FLLSKT⊕⊆S4 follow as above. Summing up we have:

Theorem 12. LNSKT⊕⊆S4 and FLLSKT⊕⊆S4 are sound and complete for KT ⊕⊆ S4. ut

5.2 Non-normal modal logics

The same ideas also yield LNS calculi and their focused versions for some non-normal
modal logics, i.e., modal logics that are not extensions of modal logic K (see [3] for an
introduction). The calculi themselves are of independent interest since, to the best of our
knowledge, nested sequent calculi for the logics below have not been considered before
in the literature. The most basic non-normal logic, classical modal logic E, is given
Hilbert-style by stipulating only the rule (E) (or congruence rule) for the connective �

A ⊃ B B ⊃ A
�A ⊃ �B

(E)



10 Björn Lellmann and Elaine Pimentel

[x]R�y : Γ; X → y : A;∆
zR∗[x] : Γ; X → ·;∆, x : �A

�R�
[x]R♥y : Γ; X → y : A;∆

zR∗[x] : Γ; X → ·;∆, x : ♥A
♥R♥

[x]R�y : Γ, y : ♥A; X → Y;∆
[x]R�y : Γ, x : ♥A; X → Y;∆

♥L�
[x]R�y : Γ; X, y : A→ Y;∆

[x]R�y : Γ, x : �A; X → Y;∆
�L

[x]R♥y : Γ, y : ♥A; X → Y;∆
[x]R♥y : Γ, x : ♥A; X → Y;∆

♥L♥
zR∗x : Γ, x : �A; X, x : A⇒ Y;∆

zR∗x : Γ; X, x : �A⇒ Y;∆
t�

Fig. 11. The modal rules of FLLSKT⊕⊆S4. Here ∗ ∈ {�,♥} and y is fresh in �R� and �R♥. The rule t♥
is analogous to t� and is omitted. The propositional rules are as in Fig. 4 with R∗ instead of R.

A ` B B ` A
Γ,�A ` �B, ∆

(E) A ` B
Γ,�A ` �B, ∆

(M) ` A
Γ ` �A, ∆

(N)

A1, . . . , An ` B B ` A1 · · · B ` An

Γ,�A1, . . . ,�An ` �B, ∆
(En)

A1, . . . , An ` B
Γ,�A1, . . . ,�An ` �B, ∆

(Mn)

GE { (E) } GEC { (En) : n ≥ 1 } GMN { (M), (N) }
GM { (M) } GMC { (Mn) : n ≥ 1 } GMCN { (Mn) : n ≥ 0 }

Fig. 12. Sequent rules and calculi for some non-normal modal logics

which allows exchanging logically equivalent formulae under the modality. Some of the
better known extensions of this logic are formulated by the addition of axioms from

M �(A ∧ B)→ (�A ∧ �B) C (�A ∧ �B)→ �(A ∧ B) N �>

Fig. 12 shows the modal rules of the standard cut-free sequent calculi for these logics [6],
where in addition weakening is embedded in the conclusion. Extensions of E are written
by concatenating the names of the axioms, and in presence of the monotonicity axiom
M, the initial E is dropped. E.g., the logic MC is the extension of E with axioms M and
C. Its sequent calculus GMC is given by the standard propositional and structural rules
together with the rule (E) as well as the rules (Mn) for n ≥ 1.

We first consider monotone logics, i.e., extensions of M. To simulate the rules from
Fig. 12 in the linear nested setting we introduce an auxiliary nesting operator //m to
capture a state where a sequent rule has been partly processed. In contrast, the intuition
for the original nesting// is that the simulation of a rule is finished. In view of end-active
systems, we restrict the occurrences of //m to the end of the structures. Linear nested
sequents for monotonic non-normal modal logics then are given by:

LNSm ::= Γ ` ∆ | Γ ` ∆//mΣ ` Π | Γ ` ∆//LNSm

The modal linear nested sequent rules are given in Fig. 13. The propositional rules are
those of the end-active version of LNSG (Fig. 1) with the restriction that they cannot be
applied inside//m. The sequent rule (Mn) is then simulated by the following derivation

A1, . . . , An ` B
�A1, . . . ,�An ` �B

(Mn)
.... G

{

G// `//A1, . . . , An−1, An ` B
G// `//mA1, . . . , An−1 ` B

�m
L

G//�A1, . . . ,�An `//
m ` B

�c
L

G//�A1, . . . ,�An ` �B
�m

R



Proof Search in Nested Sequent Calculi 11

G//Γ ` ∆//m ` B
G//Γ ` �B, ∆

�m
R

G//Γ ` ∆//Σ, A ` Π
G//Γ,�A ` ∆//mΣ ` Π

�m
L

G//Γ ` ∆//mΣ, A ` Π
G//Γ,�A ` ∆//mΣ ` Π

�c
L

G//Γ ` ∆// ` B
G//Γ ` �B, ∆

�n
R

LNSM { �
m
R ,�

m
L } LNSMC { �

m
R ,�

m
L ,�

c
L } LNSMN { �

m
R ,�

m
L ,�

n
R } LNSMCN { �

m
R ,�

m
L ,�

c
L,�

n
R }

Fig. 13. Modal linear nested sequent rules for some monotone non-normal modal logics.

G//Γ ` ∆//e ( ` B; B ` )
G//Γ ` �B, ∆

�e
R

G//Γ ` ∆//Σ, A ` Π G//Γ ` ∆//Ω ` A, Θ
G//Γ,�A ` ∆//e (Σ ` Π ;Ω ` Θ)

�e
L

G//Γ ` ∆//e (Σ, A ` Π ;Ω ` Θ) G//Γ ` ∆//Ω ` A, Θ
G//Γ,�A ` ∆//e (Σ ` Π ;Ω ` Θ)

�ec
L

LNSE { �e
R,�

e
L } LNSEC { �e

R,�
e
L,�

ec
L }

Fig. 14. Modal linear nested sequent rules for some non-monotone non-normal modal logics

For extensions of classical modal logic E not containing the monotonicity axiom M we
need to store more information about the unfinished premisses. Thus instead of//m we
introduce a binary nesting operator//e(.; .). Linear nested sequents then are given by

LNSe ::= Γ ` ∆ | Γ ` ∆//e (Σ ` Π ;Ω ` Θ) | Γ ` ∆//LNSe

Fig. 14 shows the modal rules for these logics, where again the propositional rules are
those of end-active LNSG (Fig. 1) with the restriction that they are not applied inside the
nesting//e. The derivation simulating the rule (En) then is

G//Γ ` ∆//A1, . . . , An ` B G//Γ ` ∆//B ` An

G//Γ,�An ` ∆//
e (A1, . . . , An−1 ` B; B ` )

�e
L

....
G//Γ,�A2, . . . ,�An ` ∆//

e (A1 ` B; B ` ) G//Γ,�A2, . . . ,�An ` ∆//B ` A1

G//Γ,�A1, . . . ,�An ` ∆//
e ( ` B; B ` )

�ec
L

G//Γ,�A1, . . . ,�An ` �B, ∆
�e

R

Theorem 13 (Completeness). The linear nested sequent calculi of Fig. 13 and Fig. 14
are complete w.r.t. the corresponding logics. ut

For showing soundness of such calculi we need a different method, though. This is
due to the fact that, unlike for normal modal logics, there is no clear formula interpretation
for linear nested sequents for non-normal modal logics. However, since the propositional
rules cannot be applied inside the auxiliary nestings//m resp.//e, the modal rules can only
occur in blocks. Together with the fact that the (end-variant) propositional rules can only
be applied in the last component this means that we can straightforwardly translate LNS
derivations back into sequent derivations.



12 Björn Lellmann and Elaine Pimentel

yRm[z,w] : Γ; X, y : A→ z : A, ∆
xR[y] : Γ; X → ·;∆, y : �A

�e
R

yRz : Γ; X, z : A⇒ Y;∆ yRw : Γ; X,w : A⇒ Y;∆
yRm[z,w] : Γ, y : �A; X → Y, ∆

�e
L

yRm[z,w] : Γ; X, z : A→ Y, ∆ yRw : Γ; X,w : A⇒ Y;∆
yRm[z,w] : Γ, y : �A; X → Y, ∆

�ec
L

FLLSE { �e
R,�

e
L } FLLSEC { �e

R,�
e
L,�

ec
L }

Fig. 15. The modal FLLS rules for non-monotone non-normal modal logics

Theorem 14 (Soundness). If a sequent Γ ` ∆ is derivable in LNSL for L one of the
logics of this section, then it is derivable in the corresponding sequent calculus.

Proof. By translating a LNSL derivation into a GL derivation, discarding everything
apart from the last component of the linear nested sequents, and translating blocks
of modal rules into the corresponding modal sequent rules. E.g., a block consisting
of an application of �m

L followed by n applications of �c
L and an application of �m

R is
translated into an application of the rule (Mn). The propositional rules only work on the
last component and never inside the nesting//m resp.//e and are translated easily by the
corresponding sequent rules. ut

Remark 15. It is possible to consider linear nested sequent calculi for these non-normal
modal logics in which the propositional rules are not restricted to their end-active
versions. In this case, soundness can be shown by a permutation-of-rules argument,
similar to the argument for levelled derivations in [9], using “levelling-preserving”
invertibility of the propositional rules.

The modal FLLS rules for the non-monotone non-normal modal logics are given in
Fig. 15, writing Re for the relation corresponding to//e. The propositional rules are those
of FLLSK (Fig. 6). The systems for monotone logics are constructed similarly.

6 Automatic proof search in linear nested sequents

The method for constructing focused systems from Section 4 generates optimal systems,
in the sense that proof search complexity matches exactly that of the original sequent
calculi. We will now go one step further and exploit the fact that these calculi sport
separate left and right introduction rules for the modalities to present a systematic way
of encoding labelled line nested sequents in linear logic. This enables us to both: (i) use
the rich linear logic meta-level theory in order to reason about the specified systems; and
(ii) use a linear logic prover in order to do automatic proof search in those systems.

Observe that, while the goal in (ii) is also achieved by implementing the focused
versions of the various systems case by case, using a meta-level framework like linear
logic allows the use of a single prover for various logics: all one has to do is to change
the theory, i.e., the specified introduction clauses. Some encodings are presented in
Appendix C and the implementation of the specified systems is available online at
http://subsell.logic.at/nestLL/.

http://subsell.logic.at/nestLL/


Proof Search in Nested Sequent Calculi 13

6.1 From sequent rules to linear logic clauses

We now consider focused linear logic (LLF) as a “meta-logic” and the formulae of
a labelled modal logic as the “object-logic” and then illustrate how sets of bipoles in
linear logic can be used to specify sequent calculi for the object-logic. Since we follow
mostly the procedure of [10], here we only give a general idea, leaving the details to
Appendix A.

Specifying sequents Let obj be the type of object-level formulae and let b·c and d·e be
two meta-level predicates on these, i.e., both of type obj → o. Object-level sequents
of the form B1, . . . , Bn ` C1, . . . ,Cm (where n,m ≥ 0) are specified as the multiset
bB1c, . . . , bBnc, dC1e, . . . , dCme within the LLF proof system. The b·c and d·e predicates
identify which object-level formulas appear on which side of the sequent – brackets
down for left (useful mnemonic: b for “left”) and brackets up for right. Finally, binary
relations R are specified by a meta-level atomic formula of the form R(·, ·).

Specifying inference rules Inference rules are specified by a re-writing clause that
replaces the active formulae in the conclusion by the active formulae in the premises.
The linear logic connectives indicate how these object level formulae are connected:
contexts are copied (&) or split (⊗), in different inference rules (⊕) or in the same sequent
(.
.............................................
............
..................................... ). For example, the specification of (a representative sample of) the rules of LLSK are

(init) ∃A.bx : Ac⊥ ⊗ dx : Ae⊥ ⊗ atomic(A)
(∧l) ∃A, B.bx : A ∧ Bc⊥ ⊗ bx : Ac O bx : Bc
(∧r) ∃A, B.dx : A ∧ Be⊥ ⊗ dx : Ae & dx : Be
(�R) ∃A, B.dx : �Ae⊥ ⊗ ∀y.(dy : Ae ..............................................

............
..................................... R(x, y)) ⊗ ∃z.R(z, x)⊥

(�L) ∃A, B.bx : �Ac⊥ ⊗ ∃y.(by : Ac ..............................................
............
..................................... R(x, y)) ⊗ R(x, y)⊥

The correspondence between focusing on a formula and an induced big-step inference
rule is particularly interesting when the focused formula is a bipole. Roughly speaking,
bipoles are positive formulae in which no positive connective can be in the scope of a
negative one (see Def. 18 or [10, Def. 3]). Focusing on such a formula will produce a
single positive and a single negative phase. This two-phase decomposition enables the
adequate capturing of the application of an object-level inference rule by the meta-level
logic. For example, focusing on the bipole clause (�R) will produce the derivation

π1

Ψ ;∆′, dy : Ae,R(x, y)) ⇑

Ψ ;∆′ ⇓ ∀y.(dy : Ae ..............................................
............
..................................... R(x, y))

[R ⇓,∀, .
.............................................
............
..................................... ,R ⇑]

π2

Ψ ;∆ ⇓ ∃A, B.dx : �Ae⊥ ⊗ ∀y.(dy : Ae ..............................................
............
..................................... R(x, y)) ⊗ ∃z.R(z, x)⊥

[∃,⊗]

where ∆ = dx : �Ae ∪ R(z, x) ∪ ∆′, and π1 and π2 are, respectively,

Ψ ; dx : �Ae ⇓ dx : �Ae⊥
I1

Ψ ; R(z, x) ⇓ ∃z.R(z, x)⊥
[∃, I1]

This one-step focused derivation will: (a) consume dx : �Ae and R(z, x); (b) create a
fresh label y; and (c) add dy : Ae and R(x, y) to the context. Observe that this matches
exactly the application of the object-level rule �R.



14 Björn Lellmann and Elaine Pimentel

When specifying a system (logical, computational, etc) into a meta level framework,
it is desirable and often mandatory that the specification is faithful, that is, one step of
computation on the object level should correspond to one step of logical reasoning in the
meta level. This is what is called adequacy [12].

Definition 16. A specification of an object sequent system is proof-adequate if provabil-
ity is preserved by the specification. If the adequacy can be shown for (open) derivations
(such as inference rules themselves), then we call the specification adequate.

Fig. 19 shows adequate specifications in LLF of the labelled systems for the logic
EC. These specifications can be used for automatic proof search as illustrated by the
following theorem which is shown readily using the methods of [10].

Theorem 17. Let L be a LLS system and let L be the theory given by the clauses of an
adequate specification of the inference rules of L. A sequent R, Γ ` ∆ is provable in L if
and only if L;R ⇑ bΓc, d∆e is provable in LLF. ut

Specifying modalities The reason why the specifications in LLF and the construction
of focused systems for LLS systems work rather well is the fact that the LNS modal
rules only manipulate a fixed number of principal formulae, i.e., one can choose some
formulae and replace them with some other formulae. If there are no principal formulae,
or if the object rule is context dependent, then proposing such encodings or a neat
notion of focusing becomes tricky, as it is often the case with sequent systems for
modal logics. In [13] linear logic with subexponentials (SELL) was used as a framework
for specifying a number of modal logics. Unfortunately, the encodings are far from
natural, and cannot be automated. Thus, in our opinion, the use of linear nested systems
constitutes a significant step towards defining efficient methods for proof search, but also
the construction of automatic provers for modal logics.

7 Concluding remarks and future work

In this work we used the correspondence between linear nested sequents and labelled
line sequents to (a) propose focused nested sequent systems for a number of modal
logics (including a non-trivial bimodal logic and non-normal logics) which match the
complexity of existing sequent calculi; and (b) specify the labelled systems in linear
logic, thereby obtaining automatic provers for all of them. This not only constitues
a significant step towards a better understanding of proof theory for modal logics in
general, but also opens an avenue for research in proof search for a broad set of systems
(not only modal).

One natural line of investigation concerns the applicability of this approach to logics
based on non-classical propositional logic such as constructive modal logics. Moreover,
we would like to understand whether our methods work for “proper” nested sequent
calculi, i.e., calculi for logics which are not based on a cut-free sequent calculus, such
as the calculi for K5 or KB [2]. Finally, it might be possible to automatically extract
focused systems from LLF specifications (while not explicitly mentioned, there is an
attempt to do so in [10]). It would be rather interesting to compare these systems with



Proof Search in Nested Sequent Calculi 15

ours. Moreover, this would provide a total mechanisation of proof systems for end-active
LNS systems, in the sense that the map TLx automatically generates LLS systems and
the encoding into LLF also can be automatised. Hence one could choose to either use an
existing LLF prover to do proof search in these systems or generate a specific prover
automatically, based on a focused version of the system.

References

1. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. of Logic and
Computation 2(3), 297–347 (1992)

2. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577 (2009)
3. Chellas, B.F.: Modal Logic. Cambridge University Press (1980)
4. Demri, S.: Complexity of simple dependent bimodal logics. In: Dyckhoff, R. (ed.)

TABLEAUX 2000, LNCS, vol. 1847, pp. 190–204. Springer (2000)
5. Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested (deep)

sequents. In: AiML 9. pp. 279–299 (2012)
6. Lavendhomme, R., Lucas, T.: Sequent calculi and decision procedures for weak modal

systems. Studia Logica 65, 121–145 (2000)
7. Lellmann, B.: Linear nested sequents, 2-sequents and hypersequents (2015), accepted for

publication, TABLEAUX 2015
8. Lellmann, B., Pattinson, D.: Constructing cut free sequent systems with context restrictions

based on classical or intuitionistic logic. In: ICLA 2013, LNCS, vol. 7750, pp. 148–160.
Springer (2013)

9. Masini, A.: 2-sequent calculus: a proof theory of modalities. Ann. Pure Appl. Logic 58,
229–246 (1992)

10. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems.
Theor. Comput. Sci. 474, 98–116 (2013)

11. Negri, S., van Plato, J.: Proof Analysis: A Contribution to Hilbert’s Last Problem. Cambridge
University Press (2011)

12. Nigam, V., Miller, D.: A framework for proof systems. J. of Automated Reasoning 45(2),
157–188 (2010)

13. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and reasoning about
proof systems. J. of Logic and Computation (2014)

14. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Towards
Mathematical Philosophy, Trends In Logic, vol. 28, pp. 31–51. Springer (2009)

15. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In: Pfenning,
F. (ed.) FOSSACS 2013, LNCS, vol. 7794, pp. 209–224. Springer (2013)



16 Björn Lellmann and Elaine Pimentel

A Focused linear logic

The connectives of linear logic can be divided into two classes. The negative connectives
have invertible introduction rules: these connectives are ..............................................

............
..................................... ,⊥, &,>, ∀, and ?. The positive

connectives ⊕, 0, ⊗, 1, ∃, and ! are the de Morgan duals of the negative connectives. A
formula is positive if it is a negated atom or its top-level logical connective is positive.
Similarly, a formula is negative if it is an atom or its top-level logical connective is
negative.

The one-sided version of the focused proof system LLF is given in Figure 16 (the
variable y in the [∀] rule is restricted so that it is not free in any formula of its conclusion).
A literal is either an atomic formula or a negated atomic formula. In LLF, there are
two kinds of sequents: Ψ ;∆ ⇑ L and Ψ ;∆ ⇓ F, where Ψ is a set of formulas, ∆ is a
multiset of formulas, L is a list of formulas, and F is a formula. The inference rules
with ⇑ in the premises and conclusion are the invertible rules. A sequence of these rules,
reading them bottom-up, deals with the “don’t-care non-determinism” of proof search: in
this negative phase of proof construction, no backtracking on the selection of inference
rules is necessary. The inference rules with ⇓ in the conclusion are the non-invertible
rules. A sequence of these rules, reading them bottom-up, deals with the “don’t-know
non-determinism” of proof search: in this positive phase of proof construction, choices
within inference rules can lead to failures for which one may need to backtrack. The
negative phase ends (reading proofs bottom-up) when > ∈ L or when all formulas in
L have been “processed”: that is, when L is the empty list. The positive phase begins
by choosing (via one of the decide rules [D1] or [D2]) a formula F on which to focus.
Positive rules are applied to F until either 1 or a negated atom is encountered (and the
proof must end using the introduction rule [1] or an initial rule [I1] or [I2] respectively),
the promotion rule [!] is applied or a negative subformula is encountered (and the proof
switches to the negative phase). This means that focused proofs can be seen (bottom-up)
as a sequence of alternations between negative and positive phases.

A.1 Bipoles

Definition 18. A monopole formula is a linear logic formula that is built up from atoms
and occurrences of the negative connectives, with the restriction that ? has atomic
scope. A bipole is a positive formula built from monopoles and negated atoms using
only positive connectives, with the additional restriction that ! can only be applied to a
monopole.

Using the linear logic distributive properties, monopoles are equivalent to formulas of
the form

∀x1 . . .∀xp[&i=1,...,n
..............................................
............
.....................................
j=1,...,mi Bi, j],

where the Bi, j are either atoms or the result of applying ? to an atomic formula. Similarly,
bipoles can be rewritten as formulas of the form

∃x1 . . .∃xp[⊕i=1,...,n ⊗ j=1,...,mi Ci, j],

where Ci, j are either negated atoms, monopole formulas, or the result of applying ! to a
monopole formula. Notice that the units >, 0, ⊥, and 1 are 0-ary versions of &, ⊕, ..............................................

............
..................................... ,



Proof Search in Nested Sequent Calculi 17

Negative rules

Ψ ;∆ ⇑ L
Ψ ;∆ ⇑ ⊥, L

[⊥]
Ψ ;∆ ⇑ F,G, L
Ψ ;∆ ⇑ F

..............................................
............
..................................... G, L

[
..............................................
............
..................................... ]

Ψ, F;∆ ⇑ L
Ψ ;∆ ⇑ ?F, L

[?]

Ψ ;∆ ⇑ >, L
[>]

Ψ ;∆ ⇑ F, L Ψ ;∆ ⇑ G, L
Ψ ;∆ ⇑ F & G, L

[&]
Ψ ;∆ ⇑ F[y/x], L
Ψ ;∆ ⇑ ∀x.F, L

[∀]

Positive rules

Ψ ; · ⇓ 1
[1]

Ψ ;∆1 ⇓ F Ψ ;∆2 ⇓ G
Ψ ;∆1, ∆2 ⇓ F ⊗G

[⊗]
Ψ ; · ⇑ F
Ψ ; · ⇓ ! F

[!]

Ψ ;∆ ⇓ F1

Ψ ;∆ ⇓ F1 ⊕ F2
[⊕l]

Ψ ;∆ ⇓ F2

Ψ ;∆ ⇓ F1 ⊕ F2
[⊕r]

Ψ ;∆ ⇓ F[t/x]
Ψ ;∆ ⇓ ∃x.F

[∃]

Identity, Decide, and Reaction rules

Ψ ; A ⇓ A⊥
[I1]

Ψ, A; · ⇓ A⊥
[I2]

Ψ ;∆ ⇓ F
Ψ ;∆, F ⇑ ·

[D1]
Ψ, F;∆ ⇓ F
Ψ, F;∆ ⇑ ·

[D2]

In [I1] and [I2], A is atomic; in [D1] and [D2], F is not an atom.

Ψ ;∆, F ⇑ L
Ψ ;∆ ⇑ F, L

[R ⇑] provided that F is positive or an atom

Ψ ;∆ ⇑ F
Ψ ;∆ ⇓ F

[R ⇓] provided that F is negative

Fig. 16. Focused proof search in linear logic LLF.

and ⊗, respectively. Given this normal representation of bipoles and according to the
focusing discipline, it turns out that, once introduced, a bipole is completely decomposed
into its atomic subformulas, a fact illustrated by the following bipole derivation.

· · ·

· · ·

Ψ ′;Γ′ ⇑ ·
Ψ ;Γ′ ⇑.

.............................................
............
.....................................
j=1,...,mi ?Ai, j

[.
.............................................
............
..................................... , ?]

· · ·

Ψ ;Γ′ ⇑ ∀x1 . . .∀xp[&i=1,...,n
..............................................
............
.....................................
j=1,...,mi ?Ai, j]

[∀,&]

Ψ ;Γ′ ⇓ !∀x1 . . .∀xp[&i=1,...,n
..............................................
............
.....................................
j=1,...,mi ?Ai, j]

[!]
· · ·

Ψ ;Γ ⇓ ∃x1 . . .∃xt[⊕i=1,...,k ⊗ j=1,...,qi Ci, j]
[∃,⊕,⊗]

Here Ai, j is atomic for all i, j. If the connective ! is not present, then the rule ! is replaced
by the rule R ⇓.

Definition 19. LetQ be the set {b·c, d·e}. An introduction clause is a closed bipole formula
of the form

∃x1 . . .∃xn[(q(�(x1, . . . , xn)))⊥ ⊗ F]

where � is an object-level connective of arity n (n ≥ 0) and q ∈ Q. Furthermore, F
does not contain negated atoms and an atom occurring in F is either of the form p(xi)
or p(xi(y)) where p ∈ Q and 1 ≤ i ≤ n. In the first case, xi has type obj while in the



18 Björn Lellmann and Elaine Pimentel

second case xi has type d → obj and y is a variable (of type d) quantified (universally
or existentially) in F (in particular, y is not in {x1, . . . , xn}).

Focusing on an introduction clause replaces an atom q(�(t1, . . . , tn)) with the formula
F[t1/x1, . . . , tn/xn]. Since this formula is a bipole, it will be immediately decomposed
into its atomic subformulas, hence capturing in one meta-level step of derivation the one
object-level step of applying an inference rule.

B Some end-active labelled systems

zRx, X, x : p ` x : p,Y init
zRx, X, x : A, x : B ` Y
zRx, X, x : A ∧ B ` Y

∧L
zRx, X ` x : A,Y zRx, X ` x : B,Y

zRx, X ` x : A ∧ B,Y
∧R

zRx, X, x : ⊥ ` Y
⊥L

zRx, X ` Y, x : A zRx, X, x : B ` Y
zRx, X, x : A ⊃ B ` Y

⊃L
zRx, X, x : A ` Y, x : B
zRx, X ` Y, x : A ⊃ B

⊃R

xRy, X, y : A ` Y
xRy, X, x : �A ` Y

�L
xRy, X ` Y, y : A

zRx, X ` Y, x : �A
�R

Fig. 17. End-active LLSK. In rule init, p is atomic.

xR�y, X ` Y, y : A
zR∗x, X ` Y, x : �A

�R�
xR♥y, X ` Y, y : A

zR∗x, X ` Y, x : ♥A
♥R♥

xR�y, X, y : ♥A ` Y
xR�y, X, x : ♥A ` Y

♥L�
xR�y, X, y : A ` Y

xR�y, X, x : �A ` Y
�L

xR♥y, X, y : ♥A ` Y
xR♥y, X, x : ♥A ` Y

♥L♥
zR∗x, X, x : �A, x : A ` Y

zR∗x, X, x : �A ` Y
t�

zR∗x, X, x : ♥A, x : A ` Y
zR∗x, X, x : ♥A ` Y

t♥

Fig. 18. End-active KT ⊕⊆ S4. Here ∗ ∈ {�,♥} and y is a fresh variable in �R� and �R♥.



Proof Search in Nested Sequent Calculi 19

C Some specifications in LLF

(�e
R) dx : �Be⊥ ⊗ ∀y∀z.(dy : Be

..............................................
............
..................................... bz : Bc

..............................................
............
..................................... Re(x, y, z)) ⊗ ∃z.R(z, x)⊥

(�e
L) bx : �Ac⊥ ⊗ ∃y∃z.((by : �Ac

..............................................
............
..................................... R(x, y)) ⊗ (dz : �Ae

..............................................
............
..................................... R(x, z)) ⊗ Re(x, y, z)⊥)

(�ec
L ) bx : �Ac⊥ ⊗ ∃y∃z.((by : �Ac

..............................................
............
..................................... Re(x, y, z)) ⊗ (dz : �Ae

..............................................
............
..................................... R(x, z)) ⊗ Re(x, y, z)⊥)

Fig. 19. The LLF specification of the modal rules of LLSEC for the logic EC from Sec. 5.2.

(�R) dx : �Ae⊥ ⊗ ∀y.(dy : Ae
..............................................
............
..................................... R�(x, y)) ⊗ ∃z.R∗(z, x)⊥

bx : �Ac⊥ ⊗ ∃y.((by : Ac
..............................................
............
..................................... R�(x, y)) ⊗ R�(x, y)⊥)

bx : ♥Ac⊥ ⊗ ∃y.((by : Ac
..............................................
............
..................................... R�(x, y)) ⊗ R�(x, y)⊥)

bx : ♥Ac⊥ ⊗ ∃y.((by : ♥Ac
..............................................
............
..................................... R�(x, y)) ⊗ R�(x, y)⊥)

(♥R) dx : ♥Ae⊥ ⊗ ∀y.(dy : Ae
..............................................
............
..................................... R♥(x, y)) ⊗ ∃z.R∗(z, x)⊥

bx : ♥Ac⊥ ⊗ ∃y.((by : ♥Ac
..............................................
............
..................................... R♥(x, y)) ⊗ R♥(x, y)⊥)

(T�) bx : �Ac⊥ ⊗ bx : Ac
(T♥) bx : ♥Ac⊥ ⊗ bx : Ac

Fig. 20. The specification of the modal rules from the labelled-linear sequent calculus for KT⊕⊆S4
in LLF. Here ∗ ∈ {�,♥}.

(�m
R ) dx : �Be⊥ ⊗ ∀y.(dy : Be

..............................................
............
..................................... Rm(x, y)) ⊗ ∃z.R(z, x)⊥

(�m
L ) bx : �Ac⊥ ⊗ ∃y.((by : �Ac

..............................................
............
..................................... R(x, y)) ⊗ Rm(x, y)⊥)

(�c
L) bx : �Ac⊥ ⊗ ∃y.((by : �Ac

..............................................
............
..................................... Rm(x, y)) ⊗ Rm(x, y)⊥)

(�n
R) dx : �Be⊥ ⊗ ∀y.(dy : Be

..............................................
............
..................................... R(x, y)) ⊗ ∃z.R(z, x)⊥

Fig. 21. Specification of the systems for monotone non-normal modal logics.


	Proof Search in Nested Sequent Calculi

