
Symbolic semantics for multiparty interactions in the
link-calculus

Linda Brodo1 and Carlos Olarte2

1 Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria
dell’Informazione, Università di Sassari, Italy

2 ECT - Universidade Federal do Rio Grande do Norte, Brazil

Abstract. The link-calculus is a model for concurrency that extends the point-
to-point communication discipline of Milner’s CCS with multiparty interactions.
Links are used to build chains describing how information flows among the differ-
ent agents participating in a multiparty interaction. The inherent non-determinism
in deciding both, the number of participants in an interaction and how they syn-
chronize, makes it difficult to devise efficient verification techniques for it. In
this paper we propose a symbolic semantics and a symbolic bisimulation for the
link-calculus which are more amenable to automating reasoning. Unlike the
operational semantics of the link-calculus, the symbolic semantics is finitely
branching and it represents, compactly, a possibly infinite number of transitions.
We give necessary and sufficient conditions to efficiently check the validity of
symbolic configurations. We also implement an interpreter based on this seman-
tics and we show how to use such implementation for verification.

1 Introduction

Distributed systems are evolving in complex ways and adequate modeling languages
are needed to specify and verify properties such as resources consuming, security, pri-
vacy, among several others. Multiparty interactions are commonplace in this new era of
distributed systems. Take for instance an on-line payment service that can involve the
shopper, the merchant’s website, a cashier service and a bank. In order to have a more
comprehensive representation of the system’s dynamics, it would be convenient to con-
sider multiparty interactions instead of binary ones. In the literature there are multi-way
synchronization calculi [10, 6, 11] that seem to be adequate to be applied in different
areas such as distributed computing, web applications and Systems Biology. Here we
shall focus on the link-calculus [1, 2] to model multiparty communications.

The link-calculus is a new multiparty process algebra where the number of partic-
ipants in each synchronization is not fixed a priori. It extends the binary communication
discipline of CCS [9] with links, e.g., a\b, that can be thought of as the forwarding of
a message received on channel a (the input channel) to another channel b (the output
channel). It could be the case that a link exposes only an output (τ\b), or an input (a\τ);
these particular actions are the ends of a link chain.

A link chain is the mechanism by which n ≥ 2 entities can synchronize. Each entity
must offer a link that have to match with an adjacent link offered by another entity.
For instance, if three processes offer, respectively, the links a\b, b\c and c\d, they can

synchronize and produce the link chain a \bb \cc\d, where information flow from a to d
through b and c.

The multiparty synchronization mechanism of the link-calculus brings interesting
challenges for devising automatic reasoning tools. The main technical problem is that
the number of participants in an interaction is not known a priori. Then, the operational
semantics must consider all the possible synchronizations among the agents running in
parallel. For instance, consider two processes offering, respectively, the links a\b and
b\a. They may synchronize and produce the link chain a\bb\a, but also b\aa\b. Moreover,
they may also produce the chain a \2b \b2\a where the virtual link 2\2 allows another
process to participate in the interaction.

We propose a symbolic semantics which is more amenable for reasoning about
link processes. The semantics collects together all the possible synchronizations that
can be composed with a multiset of links (e.g., 〈a\b,b \a〉 for the example above). We
thus abstract from the order of the links and we represent, compactly, a possibly infinite
number of transitions in the operational semantics. Moreover, unlike the operational
semantics, the proposed semantics is finitely branching.

The presence of restricted names makes more interesting the definition of symbolic
configurations. In fact, internal (multiparty) synchronizations play an important role
in the definition of network bisimulation [1, 2]. We give a symbolic representation of
transitions involving restricted names and we give efficient procedures to check the
validity of such configurations. Furthermore, we define a symbolic bisimulation and we
show that it is a congruence and it coincides with network bisimulation.

We describe a prototypical implementation in Maude (http://maude.cs.illinois.edu)
of the symbolic semantics, available at http://subsell.logic.at/links. In order to illustrate
the semantics and the tool, we consider the classical problem of the dining philosophers.
We show that this problem has a simple implementation in the link-calculus. Further-
more, we use our tool to show that the model is deadlock free. We then contribute with
a theoretical framework, that may help to better understand multiparty interactions, and
a tool to enact it.
Contributions and Plan of the paper. Section 2 recalls the theory of the link-calculus.
In Section 3 we define our symbolic semantics and we give polynomial procedures to
check whether a symbolic configuration is valid or not (Propositions 1 and 2) . We
show that the symbolic semantics is sound and complete wrt the classical one (Corol-
lary 1). We define a procedure to extract a symbolic configuration from a trace in the
operational semantics and we show that the resulting configuration is an upper bound
for the symbolic semantics (Theorem 3). In Section 3.3 we define a symbolic bisimula-
tion that coincides with network bisimulation (Theorem 5) and has the property to be a
congruence (Corollary 2). In Section 3.4 we present the implementation of simulation
and verification techniques for the link-calculus based on the symbolic semantics.
Section 4 concludes the paper with future and related work. Due to space restrictions,
auxiliary results and the detailed proofs are given in the Appendix.

2 Background on link-calculus

A link is a pair α\β where α, β ∈ C ∪ { τ,2 }. C denotes the set of channels, ranged
over by a, b, c, ...; τ is the silent action and 2 is a virtual action. Intuitively, a\b is a

prefix that executes an input on channel a and an output on b. The τ action is used to
represent a link where no interaction is required (on the left or on the right) as in a\τ . A
virtual link 2\2 represents a non specified interaction that will be later completed. The
link α\β is solid if α, β 6= 2, and it is virtual if α, β = 2. A link is valid if it is solid
or virtual. For instance, 2\2, a\a, τ\a, b\a are valid links whereas 2\a, τ\2 are not.

Links can be combined in link chains that record the source and the target sites
of each hop of the interaction. Formally, a link chain is a non-empty finite sequence
s = `1...`n of valid links `i =αi \βi such that:

1. for any i ∈ 1..n− 1,
{
βi, αi+1 ∈ C implies βi = αi+1

βi = τ iff αi+1 = τ
2. ∃i ∈ 1..n. `i 6=2 \2.

The first condition says that two adjacent solid links must match on their adjacent
sites. Moreover, the silent action τ can not be matched by a virtual action 2. This last
condition is required since, as we shall see, a τ action can be only matched with τ when
processes synchronize on restricted channels. The second condition says that a valid
link must have at least one solid link. We shall use V C to denote the set of valid chains
and we write |s| to denote the length of the chain s.

Some examples of valid link chains are: 2\a2\bb\τ , a\2b \c2\d, and τ\aa\τ . The first
chain represents an interaction where there is a pending synchronization on the left of
a\b; similarly, the second chain represents an interaction where a third-party process
must offer a link joining b and c (i.e., b\c). Finally, the last chain is the result of a binary
interaction between a process performing the output τ\a and a process performing the
input a\τ . Examples of non valid link chains are: a\cb\d, 2\τ2\a, and a\cτ\d.

Processes in the link-calculus are built from the syntax

P,Q ::= 0 | `.P | P +Q | P |Q | (ν a)P | A

where ` is a solid link (i.e. ` =α \β with α, β 6= 2) and A is a process identifier
for which we assume a (possibly recursive) definition A , P .

The nil process 0 does nothing. The process `.P first performs ` and then behaves
as P . The non-deterministic process P +Q can either behave as P or Q. Parallel com-
position is denoted as P |Q. The process (ν a)P behaves as P but it cannot exhibit any
output where the name a is not matched. Finally, A behaves as P if A , P .

As usual, (ν a)P binds the occurrences of a in P . The sets of free and of bound
names of a process P are defined in the obvious way and denoted, respectively, by
fn(P) and bn(P). Processes are taken up to alpha-conversion of bound names. We
shall often omit a trailing 0, e.g. by writing a\b instead of a \b .0.
Operational Semantics. The operational semantics is given by the labeled transition
system (P,L, −→) where states P are link-processes, labels L are valid chains (i.e.,
L = V C) and the transition relation −→ is the minimal transition relation generated
by the rules in Figure 1. In the following we explain the rules.

The presence of virtual links in a link chain suggests that an interaction is not com-
pleted and it allows for more processes to synchronize by offering the correct links.
A process `.P can take part in any interaction where ` can be placed in an admissible
position of a (larger) chain. Hence, in order to join in a communication, `.P should

suitably enlarge its link ` to a link chain s including ` and some virtual links. Formally,
Rule Act says that `.P s−→ P for any link chain s such that s IJ ` whereIJ is the least
equivalence relation on valid link chains closed under the following axioms:

s2\2 IJ s s1
2\22\2s2 IJ s21 \2 s2

2 \2 s IJ s s1
α\2a \a2\βs2 IJ s1α\aa\βs2

Note that the link τ\a (resp. a\τ) can be only enlarged with virtual links on the right
(resp. left). Moreover, if sIJτ\τ then s =τ \τ .

Rules Lsum, Lpar and Ide are standard. If P is able to exhibit a transition to P ′

with label s, then P + Q
s−→ P ′ (Rule Lsum). Similarly for Q with Rule Rsum

omitted in Figure 1. If P can exhibit a transition, it can also exhibit the same transition
when running in parallel with Q (Rules Lpar and Rpar). Finally, A moves to P ′ if its
body definition P can move to P ′ (Rule Ide).

The synchronization mechanism (Rule Com) works by merging two link chains,
say s and s′, and requires that |s| = |s′|. It also requires that every solid link of s must
correspond to a virtual link in s′ in the same position, and vice versa. Then we make the
two link chains collapse in one link chain where the virtual links have been substitute
with the corresponding solid links. More precisely, let α, β be actions. We define

α • β = α if β = 2 α • β = β if α = 2 α • β = ⊥ otherwise

Let l1 =α1 \β1
and l2 =α2 \β2

be valid links and α1•α2 = α, β1•β2 = β. If α, β 6= ⊥,
then l1 • l2 =α \β . Otherwise, l1 • l2 = ⊥. Let s = `1...`n and s′ = `′1...`

′
n be valid

chains with `i =αi \βi
and `′i =

α′i \β′i . If li•l′i 6= ⊥ for all i ∈ 1..n and (l1•l′1)...(ln•ln)
is a valid chain, then s • s′ = (l1 • l′1)...(ln • ln). Otherwise, s • s′ = ⊥.

As an example, the chains 2\22\a2\b and c\2a \2 cannot merge, as they have different
length; a \2b \2 and 2 \c2 \d cannot merge since a \cb \d is not a valid chain; a chain s
cannot merge with itself; finally, c \2a \b2\d and 2 \a2 \2b \2 merges into c \aa \bb\d.

We note that, contrary to CCS, the Rule Com can appear several times in the proof
tree of a transition since s • s′ can still contain virtual links (if s and s′ have a virtual
link in the same position). Hence, s • s′ can possibly be merged with other link chains.
However, when s • s′ is solid, no further synchronization is possible (since s • s′ = ⊥
whenever s is a chain without virtual links).

As usual in process calculi, names are restricted in order to force an interaction. Let
α be an action and a ∈ C. Then,

(ν a)α =

{
τ if α = a
α otherwise and (ν a)α\β =((ν a)α) \((ν a)β)

Let s = `1...`n, with `i =αi \βi and i ∈ 1..n. We say that a is matched in s if:

1. a 6= α1, βn (i.e., a cannot occur in the extremes of the chain), and
2. for any i ∈ 1..n− 1, either βi = αi+1 = a or βi, αi+1 6= a.

Otherwise, we say that a is unmatched (or pending) in s. We define,

(ν a)s =

{
((ν a)`1) . . . ((ν a)`n) if a is matched in s
⊥ otherwise

sIJ`

`.P
s−→ P

Act
P

s−→ P ′

P +Q
s−→ P ′

Lsum
P

s−→ P ′

P | Q s−→ P ′ | Q
Lpar

P
s−→ P ′ A , P

A
s−→ P ′

Ide

P
s−→ P ′

(νa)P
(νa)s−−−→ (νa)P ′

Res
P

s−→ P ′ Q
s′−→ Q′

P | Q s•s′−−→ P ′ | Q′
Com

Fig. 1. SOS semantic rules. Rules Rsum and Rpar are omitted. All the rules have, as a side
condition, that the link chains in the conclusion and premises are valid (i.e., different from ⊥).

As an example, all the names are matched in the valid link chain τ\τ . Instead,
neither a nor b are matched in a\aa\b. In s = τ\aa\2b \2, the name a can be restricted and
(νa)s =τ \ττ \2b \2; whereas (νb)s is undefined since b is pending in s.

The Rule Res can serve different aims: (i) floating, if a does not occur in s, then
(ν a)s = s and (ν a)P

s−→ (ν a)P ′; (ii) hiding, if a is matched in s, then all occurrences
of a in s are replaced with τ in (ν a)s; (iii) blocking, if a is pending in s (i.e., there is
some unmatched occurrence of a in s), then (ν a)s = ⊥ and the rule cannot be applied.

3 Symbolic Semantics

As mentioned in the introduction, the system a \b0 | b \a .0 can synchronize in different
ways, i.e, we can use the rule Com to observe different link chains such as a \bb \a,
b \aa \b, 2 \a2 \2b \b2 \a, etc. In this section we propose a novel symbolic semantics that
represents, in a unique configuration, all these link-chains. Hence, the non-determinism
of the operational semantics (due to Com and Act) is completely replaced with a deter-
ministic transition collecting all the possible interactions the process may engage. We
also give sufficient and necessary conditions for testing the validity on configuration.

3.1 Symbolic Configurations

Definition 1 (Link configurations). Let L be a multiset of solid links. We define the
(symbolic) configuration 〈L〉 as the set

〈L〉 = {s ∈ V C | there exists siIJli for all li ∈ L s.t. s = s1 • s2 • · · · • sn}

We say that 〈L〉 is a valid configuration if the set above is not empty.

Intuitively, the configuration 〈L〉 accumulates the links that can be merged in an
application of the rule Com. As an example, the configuration 〈a\b〉 represents, for
instance, a\b (and the process does not interact any more), 2 \a2 \b where there are
no further interaction on b and a is still pending, 2 \a2 \2b \2 where both a and b are
pending. The configuration 〈a\b,b \a〉 represent, e.g., the following chains: a \bb \a,
b \aa \b, b \2a \22 \a2 \b, 2 \b2 \aa \2b \2, etc. Finally, the configuration 〈τ\a,a \τ 〉 contains
the chains τ \aa \τ , τ \2a \a2\τ , τ \2a \22 \a2 \τ , etc. (recall that τ cannot match 2).

Next proposition (see the proof in Appendix A.1) allows us to test whether a con-
figuration 〈L〉 is valid without checking the existence of a chain s s.t. s ∈ 〈L〉. This
proposition gives an algorithm linear on the number of elements in L.

Proposition 1 (Valid Configurations). Let L be a non-empty multiset of solid links.
Then, 〈L〉 is valid iff τ appears at most once in L as input and at most once as output.

In order to define the behavior of the restriction operator in the symbolic semantics,
we have to give also a definition of restriction on configurations.

Definition 2 (Hiding). Let γ be a configuration and a ∈ C. We define the configuration

(νa)γ = {s ∈ V C | there exists s′ ∈ γ and s = (νa)s′}

We say that (νa)γ is valid if the set above is not empty.

If γ is not valid, by definition, (νa)γ is not valid. The other direction is not neces-
sarily true. For instance, L1 = 〈a\a〉 and L2 = 〈τ\a,a \τ ,b \c〉 are valid configurations
but neither (νa)〈L1〉 nor (νa)〈L2〉 are valid. In the first case, observe that (νa)(s) is not
valid for any sIJa\a (since a cannot appear in the extremes and it must be matched). In
the second case, if s ∈ 〈L2〉, then smust be of the shape τ \2a \2...2 \b2 \2c \2 ...2 \a2 \τ .
Since a is not matched, (νa)s = ⊥ and (νa)〈L2〉 is empty.

We shall use γ, γ′, ψ, ψ′ to denote configurations (with and without restricted names).
Given a multiset L of solid links, we shall use names(L) to denote the set of names
occurring in the links in L. Let γ = (νa1)...(νan)〈L〉. We define the free names of γ
as fn(γ) = names(L)\{a1, . . . , an} and its bound names as bn(γ) = {a1, . . . , an}.
Given a sequence of distinct names a = a1,, an, we shall use (νa1, ..., an)〈L〉 to
denote the configuration (νa1)...(νan)〈L〉. If a is empty, then we write 〈L〉 instead of
(νa)〈L〉. Finally, we shall write γ ≡s γ′ when γ = γ′ (i.e., γ ⊆ γ′ and γ′ ⊆ γ) .

As a direct consequence of the corresponding equivalences on chains [2], we can
show that (1) (νa)γ ≡s γ if a /∈ fn(γ) ; (2) (νa)(νb)γ ≡s (νb)(νa)γ; (3) (νa)γ ≡s
(νb)γ[b/a] is b /∈ names(γ) (α-conversion).

Now we give necessary and sufficient conditions for testing if a configuration of
the shape (νa)γ is valid or not (see the proof in Appendix A.1). Such checking can be
performed in linear time on the number of links in the configuration γ.

Proposition 2 (Valid Configuration). Let γ = (νx)〈L〉 be a valid configuration and
a ∈ fn(γ). (νa)γ is valid iff the three conditions below hold:

1. Matched: a occurs the same number of times as input and as output in γ.
2. Extremes: there exist two links α\β ,α

′ \β′ in γ where α, β′ 6= a.
3. Synchronizations: if both τ\a and a\τ occur inL, then either names(L) = {a, τ}

or there exist two links a\β ,β
′ \a in L s.t. β, β′ 6∈ {a, τ}.

The following definition shows how to merge two valid configurations. This defini-
tion will be useful to define the rule Com in the symbolic semantics.

Definition 3 (Merging). Let (νa1, ..., an)〈L〉 and (νb1, ...bm)〈L′〉 be two valid config-
urations. By alpha conversion, we assume that the names a1, ..., an (resp. b1, ..., bm) do
not occur in L′ (resp. L). We define

(νa1, ..., an)〈L〉 • (νb1, ...bm)〈L′〉 = (νa1, ..., an, b1, ..., bm)〈L] L′〉

where] denotes multiset union.

It is easy to see that • is a commutative and associative operator on configurations.

P
γ

====⇒ P ′

P +Q
γ

====⇒ P ′
Lsums

P
γ

====⇒ P ′

P | Q γ
====⇒ P ′ | Q

Lpars
P

γ
====⇒ P ′ A , P

A
γ

====⇒ P ′
Ides

`.P
〈{`}〉
====⇒ P

Acts
P

γ
====⇒ P ′

(νa)P
(νa)γ
====⇒ (νa)P ′

Ress
P

γ
====⇒ P ′ Q

γ′
====⇒ Q′

P | Q γ•γ′
====⇒ P ′ | Q′

Coms

Fig. 2. Symbolic semantics for the link-calculus. All the rules have, as a side condition, that the
configurations in the conclusion and premises are valid. Rules Rpars and Rsums are omitted.

3.2 Semantic Rules

The rules of the symbolic semantics are given in Figure 2 and explained below.
We note that the equivalence relation IJ relates two valid link chains when they

only differ on the number of virtual links. This relation is central to the definition of
configurations. In fact, it is easy to see that if s ∈ γ, then s′IJs iff s′ ∈ γ (see Lemma
6 in Appendix A.1). Rule Acts builds a configuration containing only the solid link l.
Then, as we shall see, any move of the operational rule Act can be mimicked by Acts.

Rules Lsums, Lpars and Ides are self-explanatory.
Rules Ress, as expected, makes use of the restriction operator on configurations.

From the definition of restriction on configurations, it is easy to see that:

1. if s ∈ γ and (νa)s is valid configuration, then, (νa)s ∈ (νa)γ (see Lemma 7 in
Appendix A.1); and

2. if s ∈ (νa)γ, then, by definition, there exists s′ ∈ γ s.t. s = (νa)s′.

Hence, as we prove below, if γ captures all the (operational) transitions of P , (νa)γ
captures correctly all the transitions of (νa)P .

Rule Coms merges the symbolic configurations γ and γ′. Recall that the merge
operator simply computes the union (resp. multiset union) of the bounded names (resp.
links) in γ and γ′. Unlike the operational rule, Coms does not need to know in advance
the length of the chains to be merged. Instead, it only checks if γ • γ′ is valid (by using
the algorithms in Propositions 1 and 2). Moreover, from the definition of the merge
operator, we can show that,

1. Composition: if s ∈ γ, s′ ∈ γ′ and s•s′ is defined then s•s′ ∈ γ •γ′ (see Lemma
8 in Appendix A.1).

2. Splitting: if w ∈ γ • γ′ then there exist s, s′ s.t. w = s • s′ and s ∈ γ and s′ ∈ γ′
(see Lemma 9 in the Appendix A.1).

Now we are ready to show the desired adequacy results (proofs in Appendix A.2).

Theorem 1 (Soundness). Let P be a process and assume that P s−→ P ′. Then, there
exists γ s.t. P

γ
====⇒ P ′ and s ∈ γ.

Theorem 2 (Completeness). Let P be a process and assume that P
γ

====⇒ P ′. Then,
for all s ∈ γ, P s−→ P ′.

The above results can be easily extended to sequences of transitions. Given a se-
quence of symbolic configurations Γ = γ1, ..., γn, we say that the sequence of chains
s1, ..., sn is an instance of Γ if si ∈ γi for all i ∈ 1..n.

Corollary 1 (Adequacy). Let P be a process. Then,

1. if P s1−→ P1
s2−→ P2 · · ·

sn−→ Pn then there exists γ1, ..., γn s.t. P
γ1

====⇒
P1 · · ·

γn
====⇒ Pn and for all i ∈ 1..n, si ∈ γi.

2. if P
γ1

====⇒ P1 · · ·
γn

====⇒ Pn. Then, for all instance s1, ..., sn of γ1, ..., γn, we
have P1

s1−→ P2 · · ·
sn−→ Pn.

Extraction and Soundness We can strength Theorem 1 and give an upper bound to
γ. If P s−→ P ′, one may be tempted to think that such upper bound is γ = solid(s)
where solid(s) denotes the multiset of solid links in s. We note that this does not work
under the presence of restriction. For instance, s = (νa)(τ\aa\τ) =τ \ττ\τ if a valid
label for a transition P s−→ P ′ but 〈τ\τ ,τ \τ 〉 is not a valid configuration.

Next definition shows how to extract a valid configuration from a link chain, that
we later show to be a suitable over approximation of the symbolic semantics.

Definition 4 (Extraction). Let s =x1 \x2

x′1
\x′2 · · ·

xn \x′n be a valid chain and α ∈ C
be a name not occurring in s. We define ext(s) = (ν α)〈L〉 where L is the multiset of
solid links of s subject to the following substitutions:
∀ i ∈ 1 . . . n− 1, substitute x′i, xi+1 with α if x′i = xi+1 = τ .

For instance, if s =a \ττ \cc \d then ext(s) = (νx)〈a\x,x \c,c \d〉. We note that if s
is a valid chain without occurrences of matched τ ’s, then ext(s) = (νa)〈solid(s)〉 ≡s
〈solid(s)〉. Moreover, if |s| = 1, i.e., s = ` for some solid link `, then ext(s) ≡ 〈{`}〉.
Finally, for any valid chain s, s ∈ ext(s).

In the following we state some lemmas needed to prove the desired adequacy result
in Theorem 3. The proofs are in Appendix A.3.

First, we show that ext(s • s′) approximates ext(s) • ext(s′). More precisely,

Lemma 1. Let s • s′ be a valid chain. Then ext(s) • ext(s′) ⊆ ext(s • s′).
Next, we relate restrictions and the extraction operator.

Lemma 2. Let (νa)s be a valid chain. Then,

1. if ext(s) = (νβ)〈L〉 then ext((νa)s) ≡s (νβ)〈L[β/a]〉; and
2. (νa)ext(s) ⊆ ext((νa)s).

Theorem 3 (Soundness). Let P be a process and assume that P s−→ P ′. Then, there
exists γ ⊆ ext(s) s.t. P

γ
====⇒ P ′.

We note that ext(s) over approximates the output of the symbolic semantics since
ext(s) identifies τ actions that may come from different synchronizations. For in-

stance, consider the operational transition (νa)(b\a|a\b) | (νc)(d\c|c\d)
s•s′−→ 0 where

s =2 \22 \22 \b2 \ττ \b s′ =d \ττ \2d \22 \22 \2 w = s • s′ =d \ττ \2d \b2 \ττ \b

In the symbolic semantics we have (νa)(b\a|a\b) | (νc)(d\c|c\d)
γ•γ′

====⇒ 0 where

γ = (νa)〈b\a,a \b〉 γ′ = (νc)〈d\c,c \d〉 ψ = γ•γ′ = (ν a, c)〈b\a,a \b,d \c,c \d〉

Note that ext(w) = (νx)〈b\x,x \b,d \x,x \d〉 and w′ =b \ττ \dd \ττ\b ∈ ext(w).
Note also that w′ is not part of the operational semantics and w′ 6∈ ψ.

3.3 Symbolic Bisimulation

In this section we show that network bisimulation, [1, 2] coincides with the symbolic
bisimulation as defined below in Definition 7. Let us recall some definitions from [1].

Let BC be the least equivalence relation over VC closed under the inference rules:

s IJ s′

s BC s′
s1
α\ττ\βs2 BC sα1 \β s2

The relation BC allows us to enlarge/contract chains by adding/removing matched
τ actions (similar to IJ for virtual actions). This means that BC abstracts away also
from internal (restricted) communications. A link chain is essential if it is composed
by alternating solid and virtual links, and has solid links at its extremes. It is immediate
to check that, by orienting the axioms of IJ and BC from left to right, we have a
procedure to transform any link chain s to a unique essential link chain s′ such that
s BC s′. We write e(s) to denote such unique representative.

Lemma 3 ([1]). For any link chains s, s′ we have s BC s′ iff e(s) = e(s′).

Definition 5. A network bisimulation [1] R is a binary relation over link processes
such that, if P R Q then:

– if P s−→ P ′, then ∃ s′, Q′ such that e(s) = e(s′), Q s′−→ Q′, and P ′ R Q′;

– if Q s−→ Q′, then ∃ s′, P ′ such that e(s) = e(s′), P s′−→ P ′, and P ′ R Q′.

We let ∼n denote the largest network bisimulation and we say that P is network
bisimilar to Q if P ∼n Q.

Theorem 4 (Congruence [1]). Network bisimilarity is a congruence.

Symbolic Bisimulation. Let s =a \ττ\a and s′ =a \a. We know that sBCs′. However,
there is no a symbolic configuration γ such that s ∈ γ and also s′ ∈ γ. On the other
side, let γ = 〈a\a〉 and γ′ = (νb)〈a\b,b \a〉. We know that γ 6≡s γ′ but, if w ∈ γ and
w′ ∈ γ′, it must be the case that wBCw′.

Next definition introduces the relation BC on configurations.

Definition 6. LetBC be the least symmetric relation on valid configurations s.t. γBCγ′

iff for all s ∈ γ there exists s′ ∈ γ′ s.t. s′BCs.

Note that γ ≡s γ′ implies, of course, that γBCγ′. Moreover, it is easy to see that
BC is an equivalence relation (see Lemma 14 in Appendix A.4).

Intuitively, if γBCγ′, then from γ we can build the same chains as in γ′ but adding/re-
moving τ synchronizations. For instance, let γ = (νx)〈a\x,x \b〉 and γ′ = 〈a\b〉. If
s ∈ γ (resp. s′ ∈ γ′) then s must be of the shape ...2 \a2 \ττ \2b \2... (resp. s′ must be of
the shape ...2 \a2 \2b \2 ...). Hence, γBCγ.

Definition 7 (Symbolic Bisimulation). A symbolic network bisimulation R is a binary
relation over link processes such that, if PRQ then:

– If P
γ

====⇒ P ′, then, there exists γ′BCγ s.t. Q
γ′

====⇒ Q′ and P ′RQ′.

– If Q
γ

====⇒ Q′, then, there exists γ′BCγ s.t. P
γ′

====⇒ P ′ and Q′RP ′.

We let ∼s be the largest symbolic network bisimulation and we say that P and Q are
bisimilar if P ∼s Q.

Testing whether γBCγ′, according to Definition 6, requires to check for every se-
quence s ∈ γ the existence of s′ ∈ γ′ s.t. s′BCs and vice versa. It turns out that there
is a more efficient procedure to decide γBCγ′ using the next definition and lemma.

Definition 8 (Capabilities). Let γ = (νx)〈L〉 be a valid configuration. Let a, b 6∈ x.
We say that [a·b] is a capability of γ, notation [a·b] ∈ γ, if a\b ∈ L or, it is possible to use
the links in L to form a chain of the shape a\x1

x1
\x2
· · ·xn−1 \xn

xn
\b where x1, ..., xn ∈ x.

We shall use cap(γ) to denote the multiset of capabilities in γ.

Lemma 4. Let s ∈ γ. For all solid link a\b, a\b ∈ e(s) iff [a · b] ∈ cap(γ) (Lemma 15
in Appendix A.4). Moreover, let γ, γ′ be valid configurations. Then, γBCγ′ iff cap(γ) =
cap(γ′) (Lemma 16 in Appendix A.4).

Therefore, checking γBCγ′ can be done in polynomial time by extracting and com-
paring the capabilities of the configurations (see Algorithm 1 in Appendix A.5).

Next theorem (see the proof in Appendix A.4) shows that network and symbolic
bisimulations coincides. Moreover, since network bisimulation is a congruence [1], so
the symbolic bisimulation.

Theorem 5. Let P and Q be processes. Then, P ∼n Q iff P ∼s Q.

Corollary 2. ∼s is a congruence.

3.4 Implementation

As we saw in the previous sections, the symbolic semantics allows for simple mech-
anisms to generate traces and check whether a configuration is valid or not. More-
over, it is finitely branching unlike the operational semantics. We have implemented
the symbolic semantics in Maude (http://maude.cs.illinois.edu) and it is available at
http://subsell.logic.at/links. In this section, relaying on the multiparty synchronization
mechanism of the link-calculus, we model the classical problem of dining philoso-
phers. We show how the semantics, and our tool, allow for the verification of such
system.

The dining philosophers is a classical example introduced to study interactions be-
tween independent and distributed entities that want to share resources. The problem
relates n philosopher sitting around a table, where each one has its own dish, and they
can only eat or think. When they, independently, decide to eat, they need two forks. On
the table, there is only one fork between two dishes, i.e. exactly n forks.

A solution to this problem in a binary synchronization calculus such as CCS leads
to a deadlock exactly when all the philosophers take the fork at their left at the same
time [8]. Hence, the system reaches a state where no further transition is possible. The
multiparty synchronization mechanism of the link-calculus allows us to overcome this

problem. The idea is that, atomically, the philosopher willing to eat has to synchronize
with both, the fork on his right and the one on his left. Then he can eat. The link-
calculus model is:
(ν dw0, . . . , dwn−1, up0, . . . , upn−1)(Phil0 | · · · | Philn−1 | Fork0 | · · · | Forkn−1)
where processes Phili and Forki are defined as:

Phili , τ \thinki .Phili +upi \up(i+1)modn
.PhilEati

PhilEati , τ \eati .dwi \dw(i+1)modn
.Phili

Forki , τ \upi .τ \dwi
.Forki + upi \τ .dwi \τ .Forki

Let us show a trace generated with our tool for the system with n = 2 philosophers:
(tau \ ’tk_1) --> (tau \ ’tk_0) --> (’up_0 \ ’up_1 ; ’up_1 \ tau ; tau \ ’up_0) -->
(tau \ ’eat_0) --> (tau \ ’tk_1) --> (’dw_0 \ ’dw_1 ; ’dw_1 \ tau ; tau \ ’dw_0) -->
(’up_0 \ tau ; ’up_1 \ ’up_0 ; tau \ ’up_1) --> (tau \ ’eat_1) --> (tau \ ’tk_0) -->
(’dw_0 \ tau ; ’dw_1 \ ’dw_0 ; tau \ ’dw_1)

In the first line, Phil1 thinks and then Phil0 thinks. Later, Phil0 grabs the two
forks, as shown in the last configuration of the first line. Such output represents the
symbolic configuration (νup0, up1)〈L〉 where L = {up0\up1 ,up1 \τ ,τ \up0}. This con-
figuration is a three-party interaction involving Phil0 and the two forks. Note that the
chain (ν up0, up1)

τ\up0up0\
up1
up1\τ =τ \ττ \ττ \τ is the only chain that belongs to the config-

uration (due to the restriction on upi). Hence, in one transition, we observe the atomic
action of grabbing the two forks. In the second line, we observe Phil0 eating, then
Phil1 thinking again and, in the end of the line, Phil0 releases the two forks with a
multiparty synchronization. The third and forth lines represent the transitions where
Phil1 grabs the forks, eat and then releases the forks.

Our tool can also compute the label transition system with all the reachable states
that, in the case of the dinning philosophers, is finite (note that this is not always the case
since the link-calculus is a conservative extension of CCS where Turing Machines can
be encoded [4]). The output of the tool and the resulting graph can be found at the tool’s
site. The transition system is deadlock-free, i.e., all the states have at least one transition.
Moreover, using the search procedures in Maude, we can verify that the system cannot
reach a configuration containing both τ\eat0 and τ\eat1 .

4 Concluding Remarks

We proposed a symbolic semantics and bisimulation for an open and multiparty in-
teraction process calculus. We gave efficient procedures to check whether a symbolic
configuration is valid or not and proved adequate our semantics wrt the operational se-
mantics. We implemented also a tool based on this semantics to simulate and verify
systems modeled in the calculus. We are currently implementing a procedure to check
(symbolic) bisimulation in the link-calculus. We are also planning to use the extrac-
tion procedure (ext(s)), that over approximates the semantics, as basis for abstract
debugging and analysis of link-calculus specifications.
Related Work. Multiparty calculi with different synchronization mechanisms have been
proposed, e.g., in CSP [7], PEPA [6], full Lotos [3]. These calculi offer parallel opera-
tors that exhibit a set of action names (or channel names), and all the parallel processes

offering that action (or an input/output action along that channel) can synchronize by
executing it. In [11], a binary form of input allows for a three-way communication.
MultiCCS [4] is equipped with a new form of prefix to execute atomic sequences of
actions and the resulting parallel operator allows for multi-synchronizations. The mul-
tiparty calculus most related to the link-calculus is in [10], where links are named and
are distinct from usual input/output actions: there is one sender and one receiver (the
output includes the final receiver name).

Symbolic semantics in processes calculi are used to represent compactly the pos-
sibly infinitely many transitions a process may exhibit. For instance, [5] proposes a
symbolic semantics for the π-calculus to avoid the problem of considering the possibly
infinite number of values a process can send/receive along a channel. We are currently
considering such techniques to give a symbolic semantics for the link-calculus with
value-passing [1]. The only symbolic semantics for a multiparty calculus we are aware
of is [3, 12] where the authors present the definition of a symbolic semantics for the full
Lotos language and its implementation.

References

1. Chiara Bodei, Linda Brodo, and Roberto Bruni. Open multiparty interaction. In Narciso
Martı́-Oliet and Miguel Palomino, editors, WADT 2012, Revised Selected Papers, volume
7841 of LNCS, pages 1–23. Springer, 2012.

2. Chiara Bodei, Linda Brodo, Roberto Bruni, and Davide Chiarugi. A flat process calculus for
nested membrane interactions. Sci. Ann. Comp. Sci., 24(1):91–136, 2014.

3. Muffy Calder and Carron Shankland. A symbolic semantics and bisimulation for full LO-
TOS. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Danhyung Lee, editors,
FORTE 2001, volume 197 of IFIP Conference Proceedings, pages 185–200. Kluwer, 2001.

4. Roberto Gorrieri and Cristian Versari. Introduction to Concurrency Theory - Transition Sys-
tems and CCS. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2015.

5. Matthew Hennessy and Huimin Lin. Symbolic bisimulations. Theor. Comput. Sci.,
138(2):353–389, 1995.

6. Jane Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

7. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.
8. Daniel J. Lehmann and Michael O. Rabin. On the advantages of free choice: A symmetric

and fully distributed solution to the dining philosophers problem. In John White, Richard J.
Lipton, and Patricia C. Goldberg, editors, POPL, pages 133–138. ACM Press, 1981.

9. Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer, 1980.

10. Ugo Montanari and Matteo Sammartino. Network conscious pi-calculus: a concurrent se-
mantics. In Proc. of Mathematical Foundations of Programming Semantics (MFPS 2012),
Electronic Notes in Theoretical Computer Science 286, pages 291–306. Elsevier, 2012.

11. Uwe Nestmann. On the expressive power of joint input. Electronic Notes in Theoretical
Computer Science, 16(2), 1998.

12. Alberto Verdejo. Building tools for LOTOS symbolic semantics in maude. In Doron A.
Peled and Moshe Y. Vardi, editors, FORTE 2002, volume 2529 of LNCS, pages 292–307.
Springer, 2002.

A Auxiliary Results and Proofs

A.1 Symbolic Semantics

Proof of Proposition 1: Let L be a non-empty multiset of solid links. Then, 〈L〉 is valid
iff τ appears at most once in L as input and at most once as output.

Proof. (⇒). Assume that there exists a valid chain s = s1 • s2 • · · · • sn ∈ γ. This is
possible only if τ appears only in the extremes (for that note that 2 \τ2 \α and α \2τ \2
are both not valid). Hence, it most be the case that τ occurs at most once as input and at
most once as output in L. (⇒). It suffices to leave the τ actions (if any) to the extremes
(as input in s1 and as output in sn) and complete the chains with virtual links such that
all si are of the same length and they can be merged into a valid chain.

Proof of Proposition 2: Let γ = (νx)〈L〉 be a valid configuration and a ∈ C. (νa)γ is
valid iff the three conditions below hold:

1. Matched: a occurs the same number of times as input and as output in γ.
2. Extremes: there exist two links α\β ,α

′ \β′ in γ where α, β′ 6= a.
3. Synchronizations: if both τ\a and a\τ occur in L, then either names(L) = {a, τ}

or there exist two links a\β ,β
′ \a in L s.t. β, β′ 6∈ {a, τ}.

Proof. (⇒) Assume that there exists s ∈ (νa)(νx)〈L〉 and s = (νa)(νx)s′ for some
s′ ∈ γ = (νx)〈L〉. By definition of (νa) (in chains), we know that a does not occur in
the extremes of s′ (and then (2) holds) and all the occurrences of a are matched in s′ (and
then (1) holds). Now assume that both τ\a and a\τ occur in γ. By definition, we know
that there exists siIJli for all li ∈ L and s′ = s1 • s2 • · · · • sn. Since s = (νa)(νx)s′

and s is valid, we also know that s1 =τ \2a \2 · · ·2 \2 and sn =2 \22 \2 · · ·a \τ . Hence,
either all the other links are a\a and we obtain

s = (νa)(νx)τ \aa \a...a \aa \τ =τ \τ · · ·τ \τ

or, there must be β, β′ 6= a that allow us to complete the chain:

s = (νa)(νx)τ\aa\a · · ·a\2β \2 · · ·2\β
′

2 \aa\a· · ·a \τ =τ \τ · · ·τ\2β \2 · · ·2\β
′

2 \τ · · ·τ\τ · · ·τ \τ

We then conclude that (3) holds.
(⇐) If the three conditions hold, by using a similar reasoning as above, we can

always build a s ∈ (νa)γ.

Lemma 5 (Congruences). Let γ be a valid configuration. Then, (1) (νa)γ ≡s γ if
a /∈ fn(γ) ; (2) (νa)(νb)γ ≡s (νb)(νa)γ; (3) (νa)γ ≡s (νb)γ[b/a] is b /∈ names(γ),
up to α-conversion.

Proof. The proof is immediate from the corresponding equivalences on link chains.

Lemma 6. Let s be a valid chain and γ a configuration s.t. s ∈ γ. Then, s′IJs iff
s′ ∈ γ.

Proof. Immediate from the definition of configuration.

Lemma 7. Let s ∈ γ and assume that (νa)s is valid. Then (νa)s ∈ (νa)γ

Proof. Straightforward from definition of (νa)〈L〉.

Lemma 8. Assume that s ∈ γ and s′ ∈ γ′. If s • s′ is defined then s • s′ ∈ γ • γ′.

Proof. Straightforward from definitions of configurations and •.

Lemma 9. Let w be a valid chain s.t. w ∈ γ • γ′. Then, there exist s, s′ s.t. w = s • s′
and s ∈ γ and s′ ∈ γ′.

Proof. Straightforward from definitions of configurations and •.

A.2 Adequacy Results

Theorem 6 (Soundness). Let P be a process and assume that P s−→ P ′. Then, there
exists γ s.t. P

γ
====⇒ P ′ and s ∈ γ.

Proof. We proceed by induction on the (height of) derivation P s−→ P ′:

– Case Act. By Rule Act we know that sIJl and, by Rule Acts, we also know that

l .P
〈{l}〉

====⇒ P ′. We conclude by noticing that s ∈ 〈{l}〉.
– The cases Sum, Par and Ide are easy consequences of induction (since we have

shorter derivations on the premises and the rules do not modify the label s).

– Case Com. We know that P | Q s•s′−→ P ′ | Q′ and P s−→ P ′ and Q s′−→ Q′. By

induction we know that there exists γ, γ′ such that P
γ

====⇒ P ′, Q
γ′

====⇒ Q′

and s ∈ γ and s′ ∈ γ′. By Lemma 8 we know that s • s′ ∈ γ • γ′ and then, γ • γ′ is

valid. We conclude by using Coms to show that P | Q γ•γ′
====⇒ P ′ | Q′ as needed.

– Case Res. Let P = (νa)Q. We know that P
(νa)s−→ Q′ and Q s−→ Q′. By in-

duction we know that there exists γ s.t. Q
γ

====⇒ Q′ and s ∈ γ. By Lemma 7
we know that (νa)s ∈ (νa)γ and hence, (νa)γ is a valid configuration. By using

Ress, we conclude P
(νa)γ
====⇒ (νa)Q′ as needed.

Theorem 7 (Completeness). Let P be a process and assume that P
γ

====⇒ P ′. Then,
for all s ∈ γ, P s−→ P ′.

Proof. We proceed by induction on the (height of) derivation P
γ

====⇒ P ′.

– Case Acts. It is easy to show that s ∈ γ = 〈{l}〉 iff sIJl. Then, for any s ∈ γ,
P

s−→ P ′.
– The cases Sums, Pars and Ides are easy consequences of induction.

– Case Coms. We know that P | Q γ•γ′
====⇒ P ′ | Q′ and P

γ
====⇒ P ′ and

Q
γ′

====⇒ Q′. Let w ∈ γ • γ′. By Lemma 9, there exist s ∈ γ and s′ ∈ γ′

s.t. w = s•s′. By induction we know that P s−→ P ′ andQ s′−→ Q′. We conclude

by using the rule Com to show that P | Q s•s′−→ P ′ | Q′ as wanted.

– Case Ress. Let P = (νa)Q. We know that P
(νa)γ
====⇒ (νa)Q′ and Q

γ
====⇒ Q′.

Let s ∈ (νa)γ. By definition, there exists s′ ∈ γ s.t. s = (νa)s′. By induction we

know that Q s′−→ Q′. We conclude by using the rule Res to show that P s−→
(νa)Q′.

Corollary 3 (Soundness). Let P be a process and assume that P s1−→ P1
s2−→

P2 · · ·
sn−→ Pn. Then, there exists γ1, ..., γn s.t. P

γ1
====⇒ P1 · · ·

γn
====⇒ Pn and

for all i ∈ 1..n, si ∈ γi.

Proof. By induction on the length of the derivation (n) and using Theorem 1.

Definition 9 (Instance). Given a sequence of symbolic configurations Γ = γ1, ..., γn,
we say that the sequence of chains s1, ..., sn is an instance of Γ if si ∈ γi for all
i ∈ 1..n.

Corollary 4 (Completeness). LetP be a process and assume thatP
γ1

====⇒ P1 · · ·
γn

====⇒
Pn. Then, for all instance s1, ..., sn of γ1, ..., γn, we have P1

s1−→ P2 · · ·
sn−→ Pn.

Proof. By induction on the length of the derivation (n) and using Theorem 2.

A.3 Extraction

Lemma 10. Let s • s′ be a valid chain. Then ext(s) • ext(s′) ⊆ ext(s • s′).

Proof. Let w ∈ ext(s) • ext(s′). By Lemma 9, we know that there exist w1, w2 s.t.
w1 ∈ ext(s) and w2 ∈ ext(s′). Let ext(s) = (να)〈L〉 and ext(s′) = (να′)〈L′〉.
Note that α (resp. α′) may be “empty” if s (resp. s′) does not have occurrences of
matched τ ’s. Let w′1 (resp. w′2) be as w1 (resp. w2) but replacing the matched τ ’s (if
any) by α (resp. α′). It is easy to see that w′1 ∈ 〈L〉 and w′2 ∈ 〈L′〉 and also that
w′1 • w′2 is valid. By Lemma 8, w′1 • w′2 ∈ 〈L1〉 • 〈L2〉. Let ext(s • s′) = (νβ)〈M〉.
Note that it must be the case that M = L1] L2 (since s • s′ cannot add new matched
τ ’s wrt s and s′). Let wβ = (w′1 • w′2)[β/α][β/α′]. We conclude by noticing that
w = (νβ)wβ ∈ (νβ)〈M〉.

Lemma 11. Let (νa)s be a valid chain and let ext(s) = (νβ)〈L〉. Then, ext((νa)s) ≡
(νβ)〈L[β/a]〉.

Proof. Since (νa)s is defined, we know that all a’s in s are matched. Moreover, (νa)s
adds to s some extra τ synchronization (those caused by matched a’s). Then, ext((νa)s)
must also abstract away (using the fresh name β) all the matched a.

Lemma 12. Let (νa)s be a valid chain. Then (νa)ext(s) ⊆ ext((νa)s).

Proof. Let ext(s) be of the shape (νb)〈L〉 and w ∈ (νa)ext(s). Then, there exists
w′ ∈ 〈L〉 s.t. w = (νa)(νb)w′ (where all the a’s and b’s in w′ are matched and they do
not occur in the extremes). Let ext((νa)s) = (νβ)〈L′〉 and wβ = w′[β/a][β/b]. It is
easy to see that w = (νβ)wβ . Using Lemma 11, we know that L′ = L[β/a] and then,
wβ ∈ 〈L′〉 as needed.

Lemma 13 (Ordering preservation). Let γ, γ′, ψ, ψ′ be configurations. Then,

1. If γ ⊆ γ′ then (νa)γ ⊆ (νa)γ′.
2. If γ ⊆ γ′ and ψ ⊆ ψ′ then γ • ψ ⊆ γ′ • ψ′.

Proof. (1) Let s ∈ (νa)γ. We know that there exists s′ ∈ γ s.t. s = (νa)s′. Hence,
s′ ∈ γ′ and then s ∈ (νa)γ′.

(2) If w ∈ γ • ψ, by Lemma 9, there exists s ∈ γ and s′ ∈ ψ s.t w = s • s′. Since
s ∈ γ′ and s′ ∈ ψ′, we use Lemma 8 to conclude that s • s′ ∈ γ′ • ψ′.

Theorem 8 (Soundness). Let P be a process and assume that P s−→ P ′. Then, there
exists γ ⊆ ext(s) s.t. P

γ
====⇒ P ′.

Proof. We proceed by induction on the (height of) derivation P s−→ P ′:

– Case Act. This case is easy by noticing that for any sIJl, ext(s) = 〈{l}〉.
– The cases Sum, Par and Ide are easy consequences of induction (since we have

shorter derivations on the premises and the rules do not modify the label s).

– Case Com. We know that P | Q s•s′−→ P ′ | Q′ and P s−→ P ′ and Q s′−→ Q′.

By induction we know that P
γ

====⇒ P ′, Q
γ′

====⇒ Q′ and γ ⊆ ext(s) and

γ′ ⊆ ext(s′). Applying Rule Coms, we know that P | Q γ•γ′
====⇒ P ′ | Q′. The

result follows by using Lemmas 10 and 13 to show that γ•γ′ ⊆ ext(s)•ext(s′) ⊆
ext(s • s′).

– Case Res. Let P = (νa)Q. We know that P
(νa)s−→ Q′ and Q s−→ Q′. By induc-

tion we know that Q
γ

====⇒ Q′ and γ ⊆ ext(s). Applying Rule Ress, we know

that P
(νa)γ
====⇒ Q′. The result follows by using Lemmas 12 and 13 to show that

(νa)γ ⊆ (νa)ext(s) ⊆ ext((νa)s) as wanted.

A.4 Bisimulation Results

Lemma 14. BC is an equivalence relation.

Proof. Reflexivity and transitivity are easy and symmetry holds by definition.

Lemma 15. Let s ∈ γ. For all solid link a\b, a\b ∈ e(s) iff [a · b] ∈ cap(γ).

Proof. Straightforward from the definition of configuration and capabilities.

Lemma 16. Let γ, γ′ be valid configurations. Then, (γ, γ′) ∈ BC iff cap(γ) = cap(γ′)

Proof. (⇒) Let s be a chain s.t. s ∈ γ. We know that there exists s′ ∈ γ′ s.t. sBCs′.
By Corollary 3, we know that e(s) = e(s′). Then, we can use Lemma 15 to show that
cap(γ) = cap(γ′).

(⇐) Let s ∈ γ and assume that cap(γ) = cap(γ′). Let s′ be as e(s) but adding/re-
moving some τ transitions so that s′ ∈ γ′. Note that such s′ exists since cap(γ) =
cap(γ′). We have e(s) = e(s′) and, by Corollary 3, sBCs′. Hence, (γ, γ′) ∈ BC.

Theorem 9. Let P and Q be processes. Then, P ∼n Q iff P ∼s Q.

Proof. (⇒) We shall show thatR = {(P,Q) | P ∼n Q} is a symbolic bisimulation. If
P

γ
====⇒ P ′, γ is a valid configuration and then, there exists s ∈ γ. By completeness,

we know that P s−→ P ′. Hence, there exists s′ s.t. e(s) = e(s′) and Q s′−→ Q′. By

soundness, there exists γ′ s.t. s′ ∈ γ′ and Q
γ′

====⇒ Q′. By Lemma 15 we know that,
for all solid link a\b ∈ e(s) (resp. ∈ e(s′)), [a · b] ∈ cap(γ) (resp. cap(γ′)). Since
e(s) = e(s′), cap(γ) = cap(γ′) and, by Lemma 16, γBCγ′ as needed.

(⇐) We shall show that R = {(P,Q) | P ∼s Q} is a network bisimulation.
Assume that P s−→ P ′. By soundness, we know that there exists γ s.t. s ∈ γ and

P
γ

====⇒ P ′. Hence, there exists γ′BCγ s.t. Q
γ′

====⇒ Q′. By completeness, for

all s′ ∈ γ′, Q s′−→ Q′. Pick one s′ to have the same order in the solid links as s
(possibly with different τ synchronizations). Then, it must be the case that e(s) = e(s′)
as needed.

Corollary 5. ∼s is a congruence.

Proof. Directly from Theorem 9 and Theorem 4

A.5 Algorithm for Checking γBCγ′.

Algorithm 1 gives us a procedure to check whether two configurations are related via
BC. More precisely, it checks whether cap(γ) = cap(γ′). The function FBC works
as follows. Let γ = (νx)〈L〉 and γ′ = (νx′)〈L′〉 be two valid configurations. First,
we eliminate from L (resp. L′) all the links of the shape x\x, where x ∈ x (resp
x ∈ x′). This corresponds to eliminate all the “intermediate” τ\τ synchronization as
in a \ττ \ττ\b a \ττ\b. Then, we test whether the capabilities of the configurations are
the same. This is done in the function simulates: we pick a capability [a · b] in the
first configuration. Then, we try to remove the same capability from γ′. This can be
done by either, finding exactly the same link on L′ or by finding a path of links built
from restricted names where a and b appear on the extremes. In the second case, note
that from γ′ we cannot build the chain 2 \2 ...2 \a2 \2b \2 ...2\2 but we can build
2 \2 ...2 \a2 \ττ \τ · · ·τ \ττ \2b \2 ...2\2 which is equivalent to the former under BC.
Finally, in the end, if γ′ has no more capabilities, L′ is empty and it means that all the
capabilities of γ are in γ′ too.

An invariant of simulates is that either L′ is empty or (νx′)〈L′〉 is a valid config-
uration. To see that, note that in each step, we eliminate from L′ a balanced number of
restricted names as input and as output.

Precondition: a, b 6∈ x
Function take(x, L, a\b)

if a\b ∈ L then return L \ {a\b};
if ∃x1, ..., xn ∈ x s.t. a\x1 ,x1 \x2 , ...,xn \b ∈ L then

return L \ {a\x1 ,x1 \x2 , ...,xn \b}
end
return L

end
Function simulates(x, L,x′, L′)

foreach [a · b] ∈ (νx)〈L〉 do
let L′′ := take(x′, L′,a \b)
if L′′ == L′ then return false;
L′ := L′′

end
return L′ == ∅

end
Precondition: (νx)〈L〉 and (νx′)〈L′〉 are valid configurations.
Function FBC(x, L,x′, L′)

foreach x ∈ x do L := L \\x\x ;
foreach x′ ∈ x′ do L′ := L′ \\ x

′
\x′ ;

return simulates(x, L,x′, L′) and simulates(x′, L′,x, L)
end

Algorithm 1: Algorithm to decide whether (νx)〈L〉BC(νx′)〈L′〉. In L \\a removes
all the copies of a in L. With aTb we mean either the chain with a unique element a\b
or a chain of the shape a \x1

x1
\x2
· · ·xn \b.

